版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集是A.或 B.或C. D.2.已知点P(,)为角的终边上一点,则()A. B.- C. D.03.已知方程表示焦点在y轴上的椭圆,则m的取值范围是()A. B. C. D.4.若一元二次不等式对一切实数都成立,则的取值范围是()A. B. C. D.5.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为()A.5 B.10 C.15 D.206.根据频数分布表,可以估计在这堆苹果中,质量大于130克的苹果数约占苹果总数的()分组频数13462A. B. C. D.7.已知数列{an}满足且,则的值是()A.-5 B.- C.5 D.8.若平面∥平面,直线∥平面,则直线与平面的关系为()A.∥ B. C.∥或 D.9.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akm B.akmC.akm D.2akm10.如图,在中,若,,,用表示为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点和在直线的两侧,则a的取值范围是__________.12._____13.数列中,,,,则的前2018项和为______.14.若扇形的周长是,圆心角是度,则扇形的面积(单位)是__________.15.设数列是等差数列,,,则此数列前20项和等于______.16.若等比数列满足,且公比,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某购物中心举行抽奖活动,顾客从装有编号分别为0,1,2,3四个球的抽奖箱中,每次取出1个球,记下编号后放回,连续取两次(假设取到任何一个小球的可能性相同).若取出的两个小球号码相加之和等于5,则中一等奖;若取出的两个小球号码相加之和等于4,则中二等奖;若取出的两个小球号码相加之和等于3,则中三等奖;其它情况不中奖.(Ⅰ)求顾客中三等奖的概率;(Ⅱ)求顾客未中奖的概率.18.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,,求的面积.19.某高速公路隧道内设双行线公路,其截面由一段圆弧和一个长方形的三边构成(如图所示).已知隧道总宽度为,行车道总宽度为,侧墙面高,为,弧顶高为.()建立适当的直角坐标系,求圆弧所在的圆的方程.()为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有.请计算车辆通过隧道的限制高度是多少.20.在中,,且的边a,b,c所对的角分别为A,B,C.(1)求的值;(2)若,试求周长的最大值.21.已知圆,点,直线.(1)求与直线l垂直,且与圆C相切的直线方程;(2)在x轴上是否存在定点B(不同于点A),使得对于圆C上任一点P,为常数?若存在,试求这个常数值及所有满足条件的点B的坐标;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
把原不等式化简为,即可求解不等式的解集.【详解】由不等式即,即,得,则不等式的解集为,故选C.【点睛】本题主要考查了一元二次不等式的求解,其中把不等式对应的一元二次方程能够因式分解,即能够转化为几个代数式的乘积形式是解答的关键,着重考查了推理与运算能力,属于基础题.2、A【解析】
根据余弦函数的定义,可直接得出结果.【详解】因为点P(,)为角的终边上一点,则.故选A【点睛】本题主要考查三角函数的定义,熟记概念即可,属于基础题型.3、B【解析】
利用椭圆的性质列出不等式求解即可.【详解】方程1表示焦点在y轴上的椭圆,可得,解得1<m.则m的取值范围为:(1,).故选B.【点睛】本题考查椭圆的方程及简单性质的应用,基本知识的考查.4、A【解析】
该不等式为一元二次不等式,根据一元二次函数的图象与性质可得,的图象是开口向下且与x轴没有交点,从而可得关于参数的不等式组,解之可得结果.【详解】不等式为一元二次不等式,故,根据一元二次函数的图象与性质可得,的图象是开口向下且与x轴没有交点,则,解不等式组,得.故本题正确答案为A.【点睛】本题考查一元二次不等式恒成立问题,考查一元二次函数的图象与性质,注意数形结合的运用,属基础题.5、B【解析】
利用分层抽样的定义和方法求解即可.【详解】设应抽取的女生人数为,则,解得.故选B【点睛】本题主要考查分层抽样的定义及方法,意在考查学生对这些知识的理解掌握水平,属于基础题.6、C【解析】
根据频数分布表计算出质量大于130克的苹果的频率,由此得出正确选项.【详解】根据频数分布表可知,所以质量大于克的苹果数约占苹果总数的.故选:C【点睛】本小题主要考查频数分析表的阅读与应用,属于基础题.7、A【解析】试题分析:即数列是公比为3的等比数列.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.8、C【解析】
利用空间几何体,发挥直观想象,易得直线与平面的位置关系.【详解】设平面为长方体的上底面,平面为长方体的下底面,因为直线∥平面,所以直线通过平移后,可能与平面平行,也可能平移到平面内,所以∥或.【点睛】空间中点、线、面位置关系问题,常可以借助长方体进行研究,考查直观想象能力.9、B【解析】
先根据题意确定的值,再由余弦定理可直接求得的值.【详解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故选:B.【点睛】本题主要考查余弦定理的应用,属于基础题.10、C【解析】
根据向量的加减法运算和数乘运算来表示即可得到结果.【详解】本题正确选项:【点睛】本题考查根据向量的线性运算,来利用已知向量表示所求向量;关键是能够熟练应用向量的加减法运算和数乘运算法则.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:若点A(3,1)和点B(4,6)分别在直线3x-2y+a=0两侧,则将点代入直线中是异号,则[3×3-2×1+a]×[3×4-2×6+a]<0,即(a+7)a<0,解得-7<a<0,故填写-7<a<0考点:本试题主要考查了二元一次不等式与平面区域的运用.点评:解决该试题的关键是根据A、B在直线两侧,则A、B坐标代入直线方程所得符号相反构造不等式.12、【解析】
将写成,切化弦后,利用两角和差余弦公式可将原式化为,利用二倍角公式可变为,由可化简求得结果.【详解】本题正确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题,涉及到两角和差余弦公式、二倍角公式的应用.13、2【解析】
直接利用递推关系式和数列的周期求出结果即可.【详解】数列{an}中,a1=1,a2=2,an+2=an+1﹣an,则:a2=a2﹣a1=1,a4=a2﹣a2=﹣1,a5=a4﹣a2=﹣2,a1=a5﹣a4=﹣1,a7=a1﹣a5=1,…所以:数列的周期为1.a1+a2+a2+a4+a5+a1=0,数列{an}的前2018项和为:(a1+a2+a2+a4+a5+a1)+…+(a2011+a2012+a2012+a2014+a2015+a2011)+a2017+a2018,=0+0+…+0+(a1+a2)=2.故答案为:2【点睛】本题考查的知识要点:数列的递推关系式的应用,数列的周期的应用,主要考查学生的运算能力和转化能力,属于基础题.14、16【解析】
根据已知条件可计算出扇形的半径,然后根据面积公式即可计算出扇形的面积.【详解】设扇形的半径为,圆心角弧度数为,所以即,所以,所以.故答案为:.【点睛】本题考查角度与弧度的转化以及扇形的弧长和面积公式,难度较易.扇形的弧长公式:,扇形的面积公式:.15、180【解析】
根据条件解得公差与首项,再代入等差数列求和公式得结果【详解】因为,,所以,【点睛】本题考查等差数列通项公式以及求和公式,考查基本分析求解能力,属基础题16、.【解析】
利用等比数列的通项公式及其性质即可得出.【详解】,故答案为:1.【点睛】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于容易题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用列举法列出所有可能,设事件为“顾客中三等奖”,的事件.由古典概型概率计算公式即可求解.(Ⅱ)先分别求得中一等奖、二等奖和三等奖的概率,根据对立事件的概率性质即可求得未中奖的概率.【详解】(Ⅰ)所有基本事件包括共16个设事件为“顾客中三等奖”,事件包含基本事件共4个,所以.(Ⅱ)由题意,中一等奖时“两个小球号码相加之和等于5”,这一事件包括基本事件共2个中二等奖时,“两个小球号码相加之和等于4”,这一事件包括基本事件共3个由(Ⅰ)可知中三等奖的概率为设事件为“顾客未中奖”则由对立事件概率的性质可得所以未中奖的概率为.【点睛】本题考查了古典概型概率的计算方法,对立事件概率性质的应用,属于基础题.18、(1);(2).【解析】
(1)利用边角互化思想得,由结合两角和的正弦公式可求出的值,于此得出角的大小;(2)由余弦定理可计算出,再利用三角形的面积公式可得出的面积.【详解】(1)∵是的内角,∴且,又由正弦定理:得:,化简得:,又∵,∴;(2)∵,,∴由余弦定理和(1)得,即,可得:,又∵,故所求的面积为.【点睛】本题考查正弦定理边角互化的思想,考查余弦定理以及三角形的面积公式,本题巧妙的地方在于将配凑为,避免利用方程思想求出边的值,考查计算能力,属于中等题.19、(1);(2)3.5【解析】试题分析:(1)建立直角坐标系,设圆一般方程,根据三点E,F,M坐标解出参数(2)根据题意求出圆上横坐标等于c点横坐标的纵坐标,再根据要求在竖直方向上的高度之差至少要有得车辆通过隧道的限制高度试题解析:(1)以所在直线为轴,以所在直线为轴,以1m为单位长度建立直角坐标系,则,,,由于所求圆的圆心在轴上,所以设圆的方程为,因为,在圆上,所以,解得,,所以圆的方程为.
(2)设限高为,作,交圆弧于点,则,将的横坐标代入圆的方程,得,得或(舍),所以(m).
答:车辆通过隧道的限制高度是米20、(1)(2)【解析】
(1)利用三角公式化简得到答案.(2)利用余弦定理得到,再利用均值不等式得到,得到答案.【详解】(1)原式(2),时等号成立.周长的最大值为【点睛】本题考查了三角恒等变换,余弦定理,均值不等式,周长的最大值,意在考查学生解决问题的能力.21、(1)或(2)存在,,【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 滨州学院《税务筹划》2023-2024学年第一学期期末试卷
- 滨州学院《合唱指挥法(一)》2023-2024学年第一学期期末试卷
- 滨州科技职业学院《微分方程2》2023-2024学年第一学期期末试卷
- 毕节职业技术学院《地下水污染与防治》2023-2024学年第一学期期末试卷
- 滨州医学院《机器学习算法》2023-2024学年第一学期期末试卷
- 软件销售服务合同
- 选修和谐劳动关系构建及劳动合同法解读自测题
- 2025年厂房租赁及节能改造合同文本3篇
- 2024至2030年不处理胶辊项目投资价值分析报告
- 物流运输合同非常详尽
- 医保信息系统管理制度范文
- 户口未婚改已婚委托书
- 售后响应时间保障措施
- 《工业数据采集技术》课程标准
- 智慧农业的无人机与遥感技术
- 河北省石家庄市2023-2024学年高一上学期期末教学质量检测生物试题(含答案解析)
- 循证护理在骨科中的护理
- 心肺复苏应急演练脚本
- 华南理工大学2022年622物理化学考研真题(含答案)
- 抖音认证承诺函
- 建筑垃圾安全生产管理制度范本
评论
0/150
提交评论