2022-2023学年宁夏银川市兴庆区银川一中数学高一下期末监测模拟试题含解析_第1页
2022-2023学年宁夏银川市兴庆区银川一中数学高一下期末监测模拟试题含解析_第2页
2022-2023学年宁夏银川市兴庆区银川一中数学高一下期末监测模拟试题含解析_第3页
2022-2023学年宁夏银川市兴庆区银川一中数学高一下期末监测模拟试题含解析_第4页
2022-2023学年宁夏银川市兴庆区银川一中数学高一下期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.关于的不等式的解集是,则关于的不等式的解集是()A. B.C. D.2.设向量满足,且,则向量在向量方向上的投影为A.1 B. C. D.3.若,且,则xy的最大值为()A. B. C. D.4.若各项为正数的等差数列的前n项和为,且,则()A.9 B.14 C.7 D.185.函数在上的图像大致为()A. B.C. D.6.化成弧度制为()A. B. C. D.7.如果角的终边经过点,那么的值是()A. B. C. D.8.函数的对称中心是()A. B. C. D.9.某次运动会甲、乙两名射击运动员成绩如右图所示,甲、乙的平均数分别为为、,方差分别为,,则()A. B.C. D.10.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是()A.12.5;12.5 B.13;13 C.13;12.5 D.12.5;13二、填空题:本大题共6小题,每小题5分,共30分。11.若点到直线的距离是,则实数=______.12.函数的零点的个数是______.13.已知数列为正项的递增等比数列,,,记数列的前n项和为,则使不等式成立的最大正整数n的值是_______.14.如图,二面角等于,、是棱上两点,、分别在半平面、内,,,且,则的长等于______.15.若函数的图象过点,则___________.16.圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦的长为___.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,圆.(1)求过点且与圆相切的直线方程;(2)若直线与圆相交于,两点,且弦的长为,求实数的值.18.已知数列为等差数列,是数列的前n项和,且,.(1)求数列的通项公式;(2)令,求数列的前n项和.19.已知数列满足:,,数列满足:().(1)证明:数列是等比数列;(2)求数列的前项和,并比较与的大小.20.如图,在三棱锥A﹣BCD中,AB=AD,BD⊥CD,点E、F分别是棱BC、BD的中点.(1)求证:EF∥平面ACD;(2)求证:AE⊥BD.21.在△ABC中,角A,B,C的对边分别为a,b,c,且a2+c2﹣b2=mac,其中m∈R.(1)若m=1,a=1,c=,求△ABC的面积;(2)若m=,A=2B,a=,求b.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】关于的不等式,即的解集是,∴不等式,可化为,解得,∴所求不等式的解集是,故选C.2、D【解析】

先由题中条件,求出向量的数量积,再由向量数量积的几何意义,即可求出投影.【详解】因为,,所以,所以,故向量在向量方向上的投影为.故选D【点睛】本题主要考查平面向量的数量积,熟记平面向量数量积的几何意义即可,属于常考题型.3、D【解析】

利用基本不等式可直接求得结果.【详解】(当且仅当时取等号)的最大值为故选:【点睛】本题考查利用基本不等式求解积的最大值的问题,属于基础题.4、B【解析】

根据等差中项定义及条件式,先求得.再由等差数列的求和公式,即可求得的值.【详解】数列为各项是正数的等差数列则由等差中项可知所以原式可化为,所以由等差数列求和公式可得故选:B【点睛】本题考查了等差中项的性质,等差数列前n项和的性质及应用,属于基础题.5、A【解析】

利用函数的奇偶性和函数图像上的特殊点,对选项进行排除,由此得出正确选项.【详解】由于,所以函数为奇函数,图像关于原点对称,排除C选项.由于,所以排除D选项.由于,所以排除B选项.故选:A.【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性、特殊点,属于基础题.6、A【解析】

利用角度化弧度公式可将化为对应的弧度数.【详解】由题意可得,故选A.【点睛】本题考查角度化弧度,充分利用公式进行计算,考查计算能力,属于基础题.7、D【解析】

根据任意角的三角函数定义直接求解.【详解】因为角的终边经过点,所以,故选:D.【点睛】本题考查任意角的三角函数求值,属于基础题.8、C【解析】,设是奇函数,其图象关于原点对称,而函数的图象可由的图象向右平移一个单位,向下平移两个单位得到,所以函数的图象关于点对称,故选C.9、C【解析】试题分析:,;,,故选C.考点:茎叶图.【易错点晴】本题考查学生的是由茎叶图中的数据求平均数和方差,属于中档题目.由茎叶图观察数据,用茎表示成绩的整数环数,叶表示小数点后的数字,利用平均值公式及标准差公式求出两个样本的平均数和方差,一般平均数反映的是一组数据的平均水平,平均数越大,则该名运动员的平均成绩越高;方差式用来描述一组数据的波动大小的指标,方差越小,说明数据波动越小,即该名运动员的成绩越稳定.10、D【解析】分析:根据频率分布直方图中众数与中位数的定义和计算方法,即可求解频率分布直方图的众数与中位数的值.详解:由题意,频率分布直方图中最高矩形的底边的中点的横坐标为数据的众数,所以中间一个矩形最该,故数据的众数为,而中位数是把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标,第一个矩形的面积为,第二个矩形的面积为,故将第二个矩形分成即可,所以中位数是,故选D.点睛:本题主要考查了频率分布直方图的中位数与众数的求解,其中频率分布直方图中小矩形的面积等于对应的概率,且各个小矩形的面积之和为1是解答的关键,着重考查了推理与计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、或1【解析】

由点到直线的距离公式进行解答,即可求出实数a的值.【详解】点(1,a)到直线x﹣y+1=0的距离是,∴;即|a﹣2|=3,解得a=﹣1,或a=1,∴实数a的值为﹣1或1.故答案为:﹣1或1.【点睛】本题考查了点到直线的距离公式的应用问题,解题时应熟记点到直线的距离公式,是基础题.12、【解析】

在同一直角坐标系内画出函数与函数的图象,利用数形结合思想可得出结论.【详解】在同一直角坐标系内画出函数与函数的图象如下图所示:由图象可知,函数与函数的图象的交点个数为,因此,函数的零点个数为.故答案为:.【点睛】本题考查函数零点个数的判断,在判断函数的零点个数时,一般转化为对应方程的根,或转化为两个函数图象的交点个数,考查数形结合思想的应用,属于中等题.13、6【解析】

设等比数列{an}的公比q,由于是正项的递增等比数列,可得q>1.由a1+a5=82,a2•a4=81=a1a5,∴a1,a5,是一元二次方程x2﹣82x+81=0的两个实数根,解得a1,a5,利用通项公式可得q,an.利用等比数列的求和公式可得数列{}的前n项和为Tn.代入不等式2019|Tn﹣1|>1,化简即可得出.【详解】数列为正项的递增等比数列,,a2•a4=81=a1a5,即解得,则公比,∴,则,∴,即,得,此时正整数的最大值为6.故答案为6.【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.14、1【解析】

由已知中二面角α﹣l﹣β等于110°,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,且AB=AC=BD=1,由,结合向量数量积的运算,即可求出CD的长.【详解】∵A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,又∵二面角α﹣l﹣β的平面角θ等于110°,且AB=AC=BD=1,∴,60°,∴故答案为1.【点睛】本题考查的知识点是与二面角有关的立体几何综合题,其中利用,结合向量数量积的运算,是解答本题的关键.15、【解析】

由过点,求得a,代入,令,即可得到本题答案【详解】因为的图象过点,所以,所以,故.故答案为:-5【点睛】本题主要考查函数的解析式及利用解析式求值.16、【解析】

两圆方程相减求出公共弦所在直线的解析式,求出第一个圆心到直线的距离,再由第一个圆的半径,利用勾股定理及垂径定理即可求出公共弦长.【详解】圆与圆的方程相减得:,由圆的圆心,半径r为2,且圆心到直线的距离,则公共弦长为.故答案为.【点睛】此题考查了直线与圆相交的性质,求出公共弦所在的直线方程是解本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】

(1)考虑切线的斜率是否存在,结合直线与圆相切的的条件d=r,直接求解圆的切线方程即可.(2)利用圆的圆心距、半径及半弦长的关系,列出方程,求解a即可.【详解】(1)由圆的方程得到圆心,半径.当直线斜率不存在时,直线与圆显然相切;当直线斜率存在时,设所求直线方程为,即,由题意得:,解得,∴方程为,即.故过点且与圆相切的直线方程为或.(2)∵弦长为,半径为2.圆心到直线的距离,∴,解得.【点睛】本题考查直线与圆的位置关系的综合应用,考查切线方程的求法,考查了垂径定理的应用,考查计算能力.18、(1)(2)【解析】

(1)由等差数列可得,求得,即可求得通项公式;(2)由(1),则利用裂项相消法求数列的和即可【详解】解:(1)因为数列是等差数列,且,,则,解得,所以(2)由(1),,所以【点睛】本题考查等差数列的通项公式,考查裂项相消法求数列的和19、(1)见证明;(2)见解析【解析】

(1)将原式变形为,进而得到结果;(2)根据第一问得到,错位相减得到结果.【详解】(1)由条件得,易知,两边同除以得,又,故数列是等比数列,其公比为.(2)由(1)知,则……①……②两式相减得即.【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.20、(1)证明见解析(2)证明见解析【解析】

(1)证明EF∥CD,然后利用直线与平面平行的判断定理证明EF∥平面ACD;(2)证明BD⊥平面AEF,然后说明AE⊥BD.【详解】(1)因为点E、F分别是棱BC、BD的中点,所以EF是△BCD的中位线,所以EF∥CD,又因为EF⊄平面ACD,CD⊂平面ACD,EF∥平面ACD.(2)由(1)得,EF∥CD,又因为BD⊥CD,所以EF⊥BD,因为AB=AD,点F是棱BD的中点,所以AF⊥BD,又因为EF∩AF=F,所以BD⊥平面AEF,又因为AE⊂平面AEF,所以AE⊥BD.【点睛】本题考查直线与平面垂直的性质以及直线与平面平行的判断定理的应用,考查逻辑推理能力与空间想

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论