重庆南川中学2021年高二数学理上学期期末试卷含解析_第1页
重庆南川中学2021年高二数学理上学期期末试卷含解析_第2页
重庆南川中学2021年高二数学理上学期期末试卷含解析_第3页
重庆南川中学2021年高二数学理上学期期末试卷含解析_第4页
重庆南川中学2021年高二数学理上学期期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆南川中学2021年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.圆形铜钱中间有一个边长为4毫米的正方形小孔,已知铜钱的直径为16毫米,现向该铜钱上随机地投入一粒米(米的大小忽略不计),那么该粒米落入小孔内的概率为(

)A. B. C. D.参考答案:A【分析】算出正方形小孔的面积和铜钱的面积,利用几何概型的概率公式可得所求的概率.【详解】设为“该粒米落入小孔内”,因为正方形小孔的面积为平方毫米,铜钱的面积为平方毫米,故,故选A.【点睛】几何概型的概率计算关键在于测度的选取,测度通常是线段的长度、平面区域的面积、几何体的体积等.2.设表示不大于的最大正数,则对任意实数,有(

)A.=- B. C.

D.+参考答案:D3.设曲线在点(1,1)处的切线与x轴的交点的横坐标为,则的值为(

)A.

B.

C.

D.1参考答案:B略4.若是互不相同的空间直线,是不重合的平面,则下列命题中真命题是(

)A.若则B.若则C.若,,则D.若,,则参考答案:C【分析】对于A,考虑空间两直线的位置关系和面面平行的性质定理;对于B,考虑线面垂直的判定定理及面面垂直的性质定理;对于C,考虑面面垂直的判定定理;对于D,考虑空间两条直线的位置关系及平行公理.【详解】选项A中,除平行外,还有异面的位置关系,则A不正确;选项B中,与位置关系有相交、平行、在内三种,则B不正确;选项C中,由,设经过的平面与相交,交线为,则,又,故,又,所以,则C正确;选项D中,与的位置关系还有相交和异面,则D不正确;故选C.【点睛】该题考查的是有关立体几何问题,涉及到的知识点有空间直线与平面的位置关系,面面平行的性质,线面垂直的判定,面面垂直的判定和性质,属于简单题目.5.已知命题p:?n∈N,n+<4,则?p为()A.?n∈N,n+<4 B.?n∈N,n+>4 C.?n∈N,n+≤4 D.?n∈N,n+≥4参考答案:D【考点】命题的否定.【分析】根据特称命题的否定是全称命题进行判断即可.【解答】解:命题为特称命题,根据特称命题的否定是全称命题得命题的否定为:?n∈N,n+≥4,故选:D.6.下列各组函数表示同一函数的是(

)A.

B. C. D.参考答案:C略7.空间直角坐标系中,点A(﹣3,4,0)与点B(x,﹣1,6)的距离为,则x等于()A.2 B.﹣8 C.2或﹣8 D.8或2参考答案:C【考点】空间两点间的距离公式.【分析】直接利用空间两点间的距离公式求解即可.【解答】解:因为空间直角坐标系中,点A(﹣3,4,0)与点B(x,﹣1,6)的距离为,所以=,所以(x+3)2=25.解得x=2或﹣8.故选C.8.右图的矩形长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为120颗,则我们可以估计出阴影部分的面积为(

)A.10 B.12C.5

D.4参考答案:D略9.某车间加工零件的数量与加工时间的统计数据如下表:零件数(个)102030加工时间(分钟)213039现已求得上表数据的回归方程中的值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为A.84分钟 B.94分钟 C.102分钟 D.112分钟参考答案:C略10.已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是()A.﹣37 B.﹣29 C.﹣5 D.以上都不对参考答案:A【考点】利用导数求闭区间上函数的最值.【分析】先求导数,根据单调性研究函数的极值点,在开区间(﹣2,2)上只有一极大值则就是最大值,从而求出m,通过比较两个端点﹣2和2的函数值的大小从而确定出最小值,得到结论.【解答】解:∵f′(x)=6x2﹣12x=6x(x﹣2),∵f(x)在(﹣2,0)上为增函数,在(0,2)上为减函数,∴当x=0时,f(x)=m最大,∴m=3,从而f(﹣2)=﹣37,f(2)=﹣5.∴最小值为﹣37.故选:A二、填空题:本大题共7小题,每小题4分,共28分11.不等式x(x﹣1)<2的解集为.参考答案:(﹣1,2)【考点】其他不等式的解法.【分析】根据一元二次不等式的解法解不等式即可.【解答】解:∵x(x﹣1)<2,∴x2﹣x﹣2<0,即(x﹣2)(x+1)<0,∴﹣1<x<2,即不等式的解集为(﹣1,2).故答案为:(﹣1,2).12.(5分)(2014?东营二模)已知等比数列{an}是递增数列,Sn是{an}的前n项和.若a1,a3是方程x2﹣10x+9=0的两个根,则S6=.参考答案:364【考点】:等比数列的性质.【专题】:计算题;等差数列与等比数列.【分析】:通过解方程求出等比数列{an}的首项和第三项,然后求出公比,直接利用等比数列前n项和公式求前6项和.解:解方程x2﹣10x+9=0,得x1=1,x2=9.∵数列{an}是递增数列,且a1,a3是方程x2﹣10x+9=0的两个根,∴a1=1,a3=9.设等比数列{an}的公比为q,则q2=9,所以q=3.∴S6==364.故答案为:364.【点评】:本题考查了等比数列的通项公式,考查了等比数列的前n项和,属于基础题.13.有下列四个命题:①“若,则或”是假命题;②“”的否定是“”③“”是“”的充分不必要条件;④“全等三角形相似”的否命题是“全等三角形不相似”,其中正确命题的序号是

.(写出你认为正确的所有命题序号)参考答案:②14.已知及,则

.参考答案:15.已知A、B、C是直线l上的三点,向量满足,则函数的表达式为

参考答案:f(x)=略16.设A、B两点在河的两岸,一测量者在A的同侧所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,算出A、B两点的距离为

m.参考答案:50【考点】余弦定理.【分析】根据题意画出图形,如图所示,由∠ACB与∠CAB的度数求出∠ABC的度数,再由AC的长,利用正弦定理即可求出AB的长.【解答】解:在△ABC中,AC=50m,∠ACB=45°,∠CAB=105°,∴∠ABC=30°,由正弦定理=得:AB===50(m),故答案为:50【点评】此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.17.正方体中,二面角的大小为__________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在直三棱柱ABC﹣A1B1C1中,AB⊥侧面BB1C1C,AB1与A1B相交于点D,E是CC1上的点,且DE∥平面ABC,BC=1,BB1=2.(Ⅰ)证明:B1E⊥平面ABE(Ⅱ)若异面直线AB和A1C1所成角的正切值为,求二面角A﹣B1E﹣A1的余弦值.参考答案:【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)推导出B1E⊥AB,BE⊥B1E,由此能证明B1E⊥平面ABE.(Ⅱ)由AC∥A1C1,知∠BAC(或∠BAC的补角)是异面直线AB和A1C1所成角,以B为原点,BC为x轴,BB1为y轴,BA为z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣B1E﹣A1的余弦值.【解答】证明:(Ⅰ)∵在直三棱柱ABC﹣A1B1C1中,AB⊥侧面BB1C1C,B1E?面BB1C1C,∴B1E⊥AB,∵AB1与A1B相交于点D,∴D是AB1的中点,取BB1中点O,连结DO,EO,则DO∥平面ABC,∵DE∥平面ABC,DE∩DO=D,∴平面DEO∥平面ABC,∴OE∥BC,∴E是CC1的中点,∴BE=B1E==,∴BE2+B1E2=BB12,∴BE⊥B1E,∵BE∩AB=B,∴B1E⊥平面ABE.解:(Ⅱ)∵AC∥A1C1,∴∠BAC(或∠BAC的补角)是异面直线AB和A1C1所成角,∵在直三棱柱ABC﹣A1B1C1中,AB⊥侧面BB1C1C,∴AB⊥BC,∵异面直线AB和A1C1所成角的正切值为,∴tan=,∵BC=1,BB1=2,∴AB=,以B为原点,BC为x轴,BB1为y轴,BA为z轴,建立空间直角坐标系,E(1,1,0),A(0,0,),B1(0,2,0),A1(0,2,),=(﹣1,﹣1,),=(﹣1,1,0),=(﹣1,1,),设平面AB1E的法向量=(x,y,z),则,取x=,得=(,2),设平面A1B1E的法向量=(a,b,c),则,取a=1,得=(1,1,0),设二面角A﹣B1E﹣A1的平面角为θ,则cosθ===.∴二面角A﹣B1E﹣A1的余弦值为.19.计算下列定积分。(本小题满分10分)(1)

(2)

参考答案:1)

(2)=

==

==

=1略20.某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.参考答案:【考点】用样本的频率分布估计总体分布;频率分布直方图.【专题】概率与统计.【分析】(1)根据频率直方图的性质求第四小组的频率.(2)利用样本进行总体估计.(3)根据古典概型的概率公式求概率.【解答】解:(1)第一小组的频率为0.010×10=0.1,第二小组的频率为0.015×10=0.15,第三小组的频率为0.015×10=0.15,第五小组的频率为0.025×10=0.25,第六小组的频率为0.005×10=0.05,所以第四小组的频率为1﹣0.1﹣0.15﹣0.15﹣0.25﹣0.05=0.3.频率/组距=0.3÷10=0.03,故频率分布直方图如图(2)平均分超过60分的频率为0.15+0.25+0.05+0.3=0.75,所以估计这次考试的及格率为75%.第一组人数0.10×60=6,第二组人数0.15×60=9,第三组人数0.15×60=9,第四组人数0.3×60=18,第五组人数0.25×60=15,第六组人数0.05×60=3,所以平均分为=71.(3)成绩在[40,50)的有6人,在[90,100]的有3人,从中选两人有,他们在同一分数段的有,所以他们在同一分数段的概率是.【点评】本题主要考查了频率分布直方图的应用,考查学生分析问题的能力,比较综合.21.在直角坐标系xOy中,直线l的参数方程为

(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A,B.若点P的坐标为(3,),求|PA|+|PB|的值.参考答案:解:(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论