重庆巫山高级中学2021-2022学年高三数学文上学期期末试题含解析_第1页
重庆巫山高级中学2021-2022学年高三数学文上学期期末试题含解析_第2页
重庆巫山高级中学2021-2022学年高三数学文上学期期末试题含解析_第3页
重庆巫山高级中学2021-2022学年高三数学文上学期期末试题含解析_第4页
重庆巫山高级中学2021-2022学年高三数学文上学期期末试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆巫山高级中学2021-2022学年高三数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知命题p:?x∈R,sinx≤1,则(

)A.¬p:?x0∈R,sinx0≥1 B.¬p:?x∈R,sinx≥1C.¬p:?x0∈R,sinx0>1 D.¬p:?x∈R,sinx>1参考答案:C【考点】命题的否定.【专题】简易逻辑.【分析】利用“¬p”即可得出.【解答】解:∵命题p:?x∈R,sinx≤1,∴¬p:?x0∈R,sinx0>1.故选:C.【点评】本题考查了“非命题”的意义,考查了推理能力,属于基础题.2.已知某运动员每次投篮命中的概率低于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35 B.0.25 C.0.20 D.0.15参考答案:A【考点】模拟方法估计概率.【分析】由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有可以通过列举得到共5组随机数,根据概率公式,得到结果.【解答】解:由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、431、393、113.共7组随机数,∴所求概率为=0.35.故选A.3.正整数按下表的规律排列

则上起第2005行,左起第2006列的数应为()A.

B.

C.

D.参考答案:D4.如图,、是双曲线的左、右焦点,过的直线与双曲线的左右两支分别交于点、.若为等边三角形,则双曲线的离心率为(

)4

参考答案:B5.已知复数z1=3+ai,z2=a﹣3i(i为虚数单位),若z1?z2是实数,则实数a的值为()A.0 B.±3 C.3 D.﹣3参考答案:B【考点】复数代数形式的乘除运算.【分析】直接把z1,z2代入z1?z2,再利用复数代数形式的乘法运算化简,由已知条件得虚部等于0,求解即可得答案.【解答】解:由z1=3+ai,z2=a﹣3i,得z1?z2=(3+ai)(a﹣3i)=6a+(a2﹣9)i,∵z1?z2是实数,∴a2﹣9=0,解得a=±3.故选:B.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.6.设等比数列的公比,前n项和为,则(

)A.

B.

C.2

D.4参考答案:A略7.已知a>0,b>0,,则的最小值为()A.4 B. C.8 D.16参考答案:B【考点】7F:基本不等式.【分析】先求出ab=1,从而求出的最小值即可.【解答】解:由,有ab=1,则,故选:B.8.执行如图所示的程序框图,输出的结果是A.5B.6C.7D.8参考答案:B9.在如图所示的框图中,若输出,那么判断框中应填入的关于的判断条件是A.

B. C.

D.参考答案:D当时不满足退出循环的条件,执行循环体后,;当时不满足退出循环的条件,执行循环体后,;当时不满足退出循环的条件,执行循环体后,;当时不满足退出循环的条件,执行循环体后,;当时满足退出循环的条件,故判断框中应填入的关于的判断条件是,故选D.

10.执行如图所示的程序框图,那么输出的S值是(

)A.

B.

-1C.

2018

D.

2参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知向量=(1,2),=(x,4),若||=2||,则x的值为.参考答案:±2【考点】向量的模.【专题】计算题.【分析】由向量和的坐标,求出两个向量的模,代入后两边取平方即可化为关于x的一元二次方程,则x可求.【解答】解:因为,则,,则,由得:,所以x2+16=20,所以x=±2.故答案为±2.【点评】本题考查了向量模的求法,考查了一元二次方程的解法,此题是基础题.12.定义在上的函数满足是偶函数且是奇函数,又,则

;参考答案:-201313.抛物线的焦点坐标是________.

参考答案:14.的展开式中含x3的系数为.(用数字填写答案)参考答案:﹣10【考点】二项式系数的性质.【分析】利用二项式展开式的通项公式,求出展开式中含x3的系数.【解答】解:展开式的通项公式为,令5﹣2r=3,解得r=1,所以展开式中含x3的系数为.故答案为:﹣10.【点评】本题考查了二项式展开式的通项公式与应用问题,是基础题.15.在平面直角坐标系中,已知点的坐标为,,点满足,,,则线段在轴上的投影长度的最大值为.参考答案:24略16.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{an}称为“斐波那契数列”.则是斐波那契数列中的第_项参考答案:2016【分析】利用,结合叠加法,即可得出结论.【详解】,,,…,,.故答案为:2016.【点睛】本题考查斐波那契数列,考查叠加法,考查学生的计算能力,属于中档题.17.(不等式选讲)对于任意实数和b,不等式恒成立,则实数x的取值范围是

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.甲乙两个班进行物理测试,其中女生60人,男生50人,从全部110人任取一人及格的概率为,并且男生和女生不及格人数相等.(1)完成如下2×2列联表

及格不及格合计女

合计

(2)根据表中数据,能否在犯错误的概率不超过0.1的前提下认为物理成绩及格与学生性别有关?(3)从两个班有放回的任取3人,记抽取的3人中不及格人数为X,求X的数学期望和方差.附:.

参考答案:解:(1)

及格不及格合计女男合计(2)由,犯错误概率不超过的前提下,没有足够的证据说明物理成绩及格与性别有关;(3)由题意可知,∴,∴.

19.已知点P(3,4)是椭圆+=1(a>b>0)上的一点,F1、F2是椭圆的两焦点,若PF1⊥PF2,试求:(1)椭圆方程;(2)△PF1F2的面积.参考答案:解:(1)

令F1(﹣c,0),F2(c,0),∵PF1⊥PF2,∴kPF1?kPF2=﹣1,即?=﹣1,解得c=5,∴椭圆方程为

+=1.∵点P(3,4)在椭圆上,∴+=1,解得a2=45,或a2=5,又a>c,∴a2=5舍去,故所求椭圆方程为

+=1.(2)P点纵坐标的值即为F1F2边上的高,∴S△PF1F2=|F1F2|×4=×10×4=20.略20.设n∈N*,f(n)=3n+7n﹣2.(1)求f(1),f(2),f(3)的值;(2)证明:对任意正整数n,f(n)是8的倍数.参考答案:【分析】(1)由n∈N*,f(n)=3n+7n﹣2,分别取n=1,2,3,能求出f(1),f(2),f(3)的值.(2)利用用数学归纳法能证明对任意正整数n,f(n)是8的倍数.【解答】解:(1)∵n∈N*,f(n)=3n+7n﹣2,∴f(1)=3+7﹣2=8,f(2)=32+72﹣2=56,f(3)=33+73﹣2=368.证明:(2)用数学归纳法证明如下:①当n=1时,f(1)=3+7﹣2=8,成立;②假设当n=k时成立,即f(k)=3k+7k﹣2能被8整除,则当n=k+1时,f(k+1)=3k+1+7k+1﹣2=3×3k+7×7k﹣2=3(3k+7k﹣2)+4×7k+4=3(3k+7k﹣2)+4(7k+1),∵3k+7k﹣2能被8整除,7k+1是偶数,∴3(3k+7k﹣2)+4(7k+1)一定能被8整除,即n=k+1时也成立.由①②得:对任意正整数n,f(n)是8的倍数.【点评】本题考查函数值的求法,考查函数值是8的倍数的证明,是基础题,解题时要认真审,注意数学归纳法的合理运用.21.某医疗科研项目组对5只实验小白鼠体内的A,B两项指标数据进行收集和分析、得到的数据如下表:指标

1号小白鼠2号小白鼠3号小白鼠4号小白鼠5号小白鼠A57698B22344(1)若通过数据分析,得知A项指标数据与B项指标数据具有线性相关关系,试根据上表,求B项指标数据y关于A项指标数据x的线性回归方程;(2)现要从这5只小白鼠中随机抽取3只,求其中至少有一只的B项指标数据高于3的概率参考公式:

参考答案:解:(1)根据题意,计算,,所以线性回归方程为。(2)从这5只小白鼠中随机抽取三只,基本事件数为223,224,225,234,235,245,……,345共10种不同的取法,其中至少有一只B项指标数据高于3的基本事件共9种取法,所以所求概率为22.如图,四棱锥S﹣ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(Ⅰ)求证:AC⊥SD;(Ⅱ)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE:EC的值;若不存在,试说明理由.参考答案:考点:直线与平面垂直的性质;直线与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)先证明AC⊥面SBD,然后利用线面垂直的性质证明AC⊥SD;(Ⅱ)利用线面平行的性质定理确定E的位置,然后求出SE:EC的值.解答: 解:(Ⅰ)连BD,设AC交BD于O,由题意SO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论