版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州市浙鳌中学2021年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,若存在,使得有解,则实数a的取值范围是(
)A. B. C. D.参考答案:B【分析】利用参数分离法进行转化,构造函数求出函数的最值即可得到结论.【详解】解:由,得:令,当时,当时,在递增,在递减,的最大值是,故所以B选项是正确的.【点睛】本题主要考查了利用导数研究能成立问题,关键是利用参数分离法,构造函数转化为求最值问题.2.过双曲线的右焦点作直线与双曲线交A、B于两点,若,这样的直线有(
)A.一条
B.两条
C.三条
D.四条参考答案:C略3.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为A.
B.
C.
D.参考答案:C略4.直线与直线平行,则它们之间的距离为
(
)
A.
B.
C.
D.参考答案:D略5.两个变量与的回归模型中,分别选择了4个不同模型,它们的相关指数如下,其中拟合效果最好的模型是()A.模型1的相关指数为0.98
B.模型2的相关指数为0.86
C.模型3的相关指数为0.68
D.模型4的相关指数为0.58参考答案:A略6.已知双曲线中心在原点,且一个焦点为,直线与其相交于M、N两点,MN中点的横坐标为,则此双曲线的方程是(
)A.
B.
C.
D.参考答案:D7.到两定点、的距离之差的绝对值等于6的点的轨迹(
)A.两条射线 B.线段 C.双曲线 D.椭圆参考答案:A8.椭圆,为上顶点,为左焦点,为右顶点,且右顶点到直线的距离为,则该椭圆的离心率为(
)A. B. C. D.参考答案:C9.直线l过点(0,2)且与双曲线x2–y2=6的右支有两个不同的交点,则l的倾斜角的取值范围是(
)(A)(0,arctan)∪(π–arctan,π)
(B)(0,arctan)(C)(π–arctan,π)
(D)(π–arctan,π)参考答案:D10.已知,,满足约束条件,若的最小值为1,则()A.
B.
C.
D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF与正方体的六个面所在的平面相交的平面个数为_____________.参考答案:412.设x>y>z,n∈N,则恒成立,则=
参考答案:4略13.不等式:
。参考答案:略14.设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于
.参考答案:不存在【考点】直线与圆锥曲线的关系;直线的斜率.【专题】圆锥曲线的定义、性质与方程.【分析】由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).利用根与系数的关系可得y1+y2=4m,利用中点坐标公式可得=2m,x0=my0﹣1=2m2﹣1.Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).再利用两点间的距离公式即可得出m及k,再代入△判断是否成立即可.【解答】解:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).∴y1+y2=4m,∴=2m,∴x0=my0﹣1=2m2﹣1.∴Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).∵|QF|=2,∴,化为m2=1,解得m=±1,不满足△>0.故满足条件的直线l不存在.故答案为不存在.【点评】本题综合考查了直线与抛物线的位置关系与△的关系、根与系数的关系、中点坐标关系、两点间的距离公式等基础知识,考查了推理能力和计算能力.15.椭圆C:+=1的上、下顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是[﹣2,﹣1],那么直线PA1斜率的取值范围是
.参考答案:[]【考点】K4:椭圆的简单性质.【分析】由题意求A1、A2的坐标,设出点P的坐标,代入求斜率,进而求PA1斜率的取值范围【解答】解:由椭圆的标准方程可知,上、下顶点分别为A1(0,)、A2(0,﹣),设点P(a,b)(a≠±2),则+=1.即=﹣直线PA2斜率k2=,直线PA1斜率k1=.k1k2=?==﹣;k1=﹣∵直线PA2斜率的取值范围是[﹣2,﹣1],即:﹣2≤k2≤﹣1∴直线PA1斜率的取值范围是[].故答案为:[].【点评】本题考查了圆锥曲线的简单性质应用,同时考查了直线的斜率公式及学生的化简能力,属于中档题16.一个圆锥的侧面积等于底面面积的3倍,若圆锥底面半径为cm,则圆锥的体积是
▲
cm3.参考答案:【分析】根据圆锥的侧面积等于底面面积的倍,计算圆锥的母线长,得出圆锥的高,代入体积公式计算出圆锥的体积.【详解】设圆锥的底面半径为,母线长为,设,,解得,圆锥的高,圆锥的,故答案为.【点睛】本题主要考查圆锥的侧面积公式、圆锥的体积公式以及圆锥的几何性质,意在考查空间想象能力,意在考查综合应用所学知识解决问题的能力.
17.求下列函数的导数_________________,_________________,_________________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)设函数.
(1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围.
参考答案:.解:(1),
因为,,即恒成立,
所以,得,即的最大值为
(2)因为当时,;当时,;当时,;
所以当时,取极大值;
当时,取极小值;
故当
或时,方程仅有一个实根.解得或.略19.(本题14分)已知二次函数的二次项系数为,且不等式的解集为.(1)若方程有两个相等的实数根,求的解析式;(2)若的最大值为正数,求的取值范围.参考答案:解:(1)∴
所以
…………2分①由方程
②
……4分因为方程②有两个相等的根,所以,即
………6分由于代入①得的解析式为
……………8分(若本题没有舍去“”第一小问得6分)(2)由及
……………12分由
解得故当的最大值为正数时,实数a的取值范围是20.(本题10分)已知函数。
(Ⅰ)若当时,的最小值为-1,求实数k的值;(Ⅱ)若对任意的,均存在以为三边边长的三角形,求实数k的取值范围。参考答案:(Ⅰ)
1分ks5u①时,,不合题意;
2分②时,,不合题意;
4分③时,,由题意,,所以;
6分(Ⅱ)①时,,满足题意;
7分②时,,所以,即,故;
9分③时,,由题意,,所以,故。综上可知,实数k的取值范围是。
10分21.(本题满分13分)在△ABC中,角A、B、C所对的边分别是,且.(Ⅰ)求的值;(Ⅱ)若b=2,求△ABC面积的最大值.参考答案:(Ⅰ)在△ABC中,由余弦定理可知,,由题意知,∴;………………2分又在△ABC中,∴,又,∴.………………6分(Ⅱ)∵b=2,∴由可知,,即,∴,……8分∵,∴………………10分∴.∴△ABC面积的最大值为.…………12分22.如图①,直角梯
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农产品守护者
- 2024年钢材企业技术转让合同
- 外销采购合同(2篇)
- 2024年销售培训与发展合同6篇
- 多继承人遗产处理合同(2篇)
- 2024版专业多语种翻译服务合同
- 小吃街承包协议书范本
- 29 跨学科实践“探究游乐设施中的功与能”(说课稿)2024-2025学年初中物理项目化课程案例
- 辅料装修合同
- 个人向事业单位借款合同范本
- (主城一诊)重庆市2025年高2025届高三学业质量调研抽测 (第一次)英语试卷(含答案)
- 2025关于标准房屋装修合同的范本
- 中国建材集团有限公司招聘笔试冲刺题2025
- 2024年马克思主义基本原理知识竞赛试题70题(附答案)
- 2024年中国机织滤布市场调查研究报告
- 2024年湖北省中考物理真题含解析
- 荔枝病虫害防治技术规程
- 贵州业主大会议事规则示范文本模板
- 2024年内容创作者与平台合作协议2篇
- 《实验性研究》课件
- 中国革命战争的战略问题(全文)
评论
0/150
提交评论