2022年山东省青岛市城阳区第九中学九年级数学第一学期期末达标检测模拟试题含解析_第1页
2022年山东省青岛市城阳区第九中学九年级数学第一学期期末达标检测模拟试题含解析_第2页
2022年山东省青岛市城阳区第九中学九年级数学第一学期期末达标检测模拟试题含解析_第3页
2022年山东省青岛市城阳区第九中学九年级数学第一学期期末达标检测模拟试题含解析_第4页
2022年山东省青岛市城阳区第九中学九年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,△ABC中∠A=60°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的三角形与△ABC不相似的是()A. B.C. D.2.某超市一天的收入约为450000元,将450000用科学记数法表示为()A.4.5×106 B.45×105 C.4.5×105 D.0.45×1063.已知点P的坐标为(3,-5),则点P关于原点的对称点的坐标可表示为()A.(3,5) B.(-3,5) C.(3,-5) D.(-3,-5)4.“汽车行驶到有交通信号灯的路口时,前方恰好遇到绿灯”,这个事件是()A.确定事件 B.随机事件 C.不可能事件 D.必然事件5.矩形的长为4,宽为3,它绕矩形长所在直线旋转一周形成几何体的全面积是()A.24 B.33 C.56 D.426.如图,在矩形中,,在上取一点,沿将向上折叠,使点落在上的点处,若四边形与矩形相似,则的长为()A. B. C. D.17.如果双曲线y=经过点(3、﹣4),则它也经过点()A.(4、3) B.(﹣3、4) C.(﹣3、﹣4) D.(2、6)8.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A. B. C. D.9.已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.则k的取值范围为()A.k>﹣ B.k>4 C.k<﹣1 D.k<410.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A.110 B.19 C.111.如图,AB是半圆O的直径,弦AD、BC相交于点P,若∠DPB=α,那么等于()A.tanα B.sina C.cosα D.12.如果零上2℃记作+2℃,那么零下3℃记作()A.-3℃ B.-2℃ C.+3℃ D.+2℃二、填空题(每题4分,共24分)13.如图,的顶点都在方格纸的格点上,则_______.14.四边形ABCD与四边形位似,点O为位似中心.若,则________.15.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是___________16.若将方程x2+6x=7化为(x+m)2=16,则m=______.17.抛物线在对称轴左侧的部分是上升的,那么的取值范围是____________.18.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.三、解答题(共78分)19.(8分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;

(2)试通过计算说明甲、乙两人的成绩谁比较稳定?

(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)20.(8分)学校为了解九年级学生对“八礼四仪”的掌握情况,对该年级的500名同学进行问卷测试,并随机抽取了10名同学的问卷,统计成绩如下:得分109876人数33211(1)计算这10名同学这次测试的平均得分;(2)如果得分不少于9分的定义为“优秀”,估计这500名学生对“八礼四仪”掌握情况优秀的人数;(3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?21.(8分)如图1,内接于,AD是直径,的平分线交BD于H,交于点C,连接DC并延长,交AB的延长线于点E.(1)求证:;(2)若,求的值(3)如图2,连接CB并延长,交DA的延长线于点F,若,求的面积.22.(10分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:△APD≌△CPD;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.23.(10分)如图,已知一次函数y1=ax+b的图象与x轴、y轴分别交于点D、C,与反比例函数y2=的图象交于A、B两点,且点A的坐标是(1,3)、点B的坐标是(3,m).(1)求一次函数与反比例函数的解析式;(2)求C、D两点的坐标,并求△AOB的面积;(3)根据图象直接写出:当x在什么取值范围时,y1>y2?24.(10分)我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)…30405060…每天销售量y(件)…500400300200…(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?25.(12分)如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,且点E在线段AD上,若AF=4,∠F=60°.(1)指出旋转中心和旋转角度;(2)求DE的长度和∠EBD的度数.26.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x的之间的函数关系式,并注明x的取值范围;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大;最大利润是多少.(注:销售利润=销售收入-购进成本)

参考答案一、选择题(每题4分,共48分)1、A【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、两三角形的对应边不成比例,故两三角形不相似,故本选项符合题意,B、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项不符合题意,C、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意,D、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项不符合题意,故选:A.【点睛】本题考查的是相似三角形的判定,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且对应的夹角相等,那么这两个三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;熟知相似三角形的判定定理是解答此题的关键.2、C【分析】根据科学记数法的表示方法表示即可.【详解】将150000用科学记数法表示为1.5×2.故选:C.【点睛】本题考查科学记数法的表示,关键在于牢记科学记数法的表示方法.3、B【分析】由题意根据关于原点对称点的坐标特征即点的横纵坐标都互为相反数即可得出答案.【详解】解:点P的坐标为(3,-5)关于原点中心对称的点的坐标是(-3,5),故选:B.【点睛】本题考查点关于原点对称的点,掌握关于原点对称点的坐标特征即横纵坐标都互为相反数是解题的关键.4、B【分析】直接利用随机事件的定义分析得出答案.【详解】解:“汽车行驶到有交通信号灯的路口时,前方恰好遇到绿灯”,这个事件是随机事件.故选B.【点睛】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.5、D【分析】旋转后的几何体是圆柱体,先确定出圆柱的底面半径和高,再根据圆柱的表面积公式计算即可求解.【详解】解:π×3×2×4+π×32×2=24π+18π=42π(cm2);故选:D.【点睛】本题主要考查的是点、线、面、体,根据图形确定出圆柱的底面半径和高的长是解题的关键.6、C【分析】可设AD=x,由四边形EFDC与矩形ABCD相似,根据相似多边形对应边的比相等列出比例式,求解即可.【详解】解:∵AB=1,可得AF=BE=1,

设DF=x,则AD=x+1,FE=1,

∵四边形EFDC与矩形ABCD相似,∴,即:,解得,(不合题意舍去),经检验是原方程的解,∴DF的长为,故选C.【点睛】本题考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式.7、B【解析】将(3、﹣4)代入即可求得k,由此得到答案.【详解】解:∵双曲线y=经过点(3、﹣4),∴k=3×(﹣4)=﹣12=(﹣3)×4,故选:B.【点睛】此题考查反比例函数的性质,比例系数k的值等于图像上点的横纵坐标的乘积.8、B【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中球的总数为:2+3=5,有2个黄球,∴从袋子中随机摸出一个球,它是黄球的概率为:.故选B.9、A【分析】根据方程的系数结合根的判别式△>0;即可得出关于k的一元一次不等式;解之即可得出结论.【详解】∵关于x的一元二次方程x2+(2k+1)x+k2=0有两个不相等的实数根,∴△=(2k+1)2﹣4×1×k2=4k+1>0,∴k>﹣.故选A.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.10、A【解析】试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码)=,故答案选A.考点:概率.11、C【分析】连接BD得到∠ADB是直角,再利用两三角形相似对应边成比例即可求解.【详解】连接BD,由AB是直径得,∠ADB=.∵∠C=∠A,∠CPD=∠APB,∴△CPD∽△APB,∴CD:AB=PD:PB=cosα.故选C.12、A【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.故选A.二、填空题(每题4分,共24分)13、【分析】如下图,先构造出直角三角形,然后根据sinA的定义求解即可.【详解】如下图,过点C作AB的垂线,交AB延长线于点D设网格中每一小格的长度为1则CD=1,AD=3∴在Rt△ACD中,AC=∴sinA=故答案为:.【点睛】本题考查锐角三角函数的求解,解题关键是构造出直角三角形ACD.14、1∶3【解析】根据四边形ABCD与四边形位似,,可知位似比为1:3,即可得相似比为1:3,即可得答案.【详解】∵四边形与四边形位似,点为位似中心.,∴四边形与四边形的位似比是1∶3,∴四边形与四边形的相似比是1∶3,∴AB∶OA∶OA′=1∶3,故答案为1∶3.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.15、【解析】试题解析:∵AB为直径,∴∠ACB=90°,∵AC=BC=,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S阴影部分=S扇形AOC=.【点睛】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.本题考查了扇形面积的计算:圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.16、3【详解】在方程x2+6x=7的两边同时加上一次项系数的一半的平方,得x2+6x+32=7+32,∴(x+3)2=16∴m=3.17、【分析】利用二次函数的性质得到抛物线开口向下,则a-1<0,然后解不等式即可.【详解】∵抛物线y=(a-1)x1在对称轴左侧的部分是上升的,

∴抛物线开口向下,

∴a-1<0,解得a<1.

故答案为a<1.【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.18、3或1【分析】由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵点E是BC的中点,∴CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.三、解答题(共78分)19、(1)8,6和9;(2)甲的成绩比较稳定;(3)变小【分析】(1)根据众数、中位数的定义求解即可;

(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;

(3)根据方差公式进行求解即可.【详解】解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;

在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;

故答案为8,6和9;

(2)甲的平均数是:(7+8+8+8+9)÷5=8,

则甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,

乙的平均数是:(6+6+9+9+10)÷5=8,

则甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,

所以甲的成绩比较稳定;

(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.

故答案为变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.20、(1)8.6;(2)300;(3)不同意,理由见解析.【分析】(1)根据加权平均数的计算公式求平均数;(2)根据表中数据求出这10名同学中优秀所占的比例,然后再求500名学生中对“八礼四仪”掌握情况优秀的人数;(3)根据平均数和中位数的意义进行分析说明即可.【详解】解:(1)∴这10名同学这次测试的平均得分为8.6分;(2)(人)∴这500名学生对“八礼四仪”掌握情况优秀的人数为300人;(3)不同意平均数容易受极端值的影响,所以小明的测试成绩为8分,并不一定代表他的成绩在班级中等偏上,要想知道自己的成绩是否处于中等偏上,需要了解班内学生成绩的中位数.【点睛】本题考查加权平均数的计算,用样本估计总体以及平均数及中位数的意义,了解相关概念准确计算是本题的解题关键.21、(1)见解析;(2);(3)【分析】(1)根据直径所对的圆周角是直角可得,然后利用ASA判定△ACD≌△ACE即可推出AE=AD;(2)连接OC交BD于G,设,根据垂径定理的推论可得出OC垂直平分BD,进而推出OG为中位线,再判定,利用对应边成比例即可求出的值;(3)连接OC交BD于G,由(2)可知:OC∥AB,OG=AB,然后利用ASA判定△BHA≌△GHC,设,则,再判定,利用对应边成比例求出m的值,进而得到AB和AD的长,再用勾股定理求出BD,可求出△BED的面积,由C为DE的中点可得△BEC为△BED面积的一半,即可得出答案.【详解】(1)证明:∵AD是的直径∵AC平分在△ACD和△ACE中,∵∠ACD=∠ACE,AC=AC,∠DAC=∠EAC∴△ACD≌△ACE(ASA)(2)如图,连接OC交BD于G,,设,则,OC=AD=∴OC垂直平分BD又∵O为AD的中点∴OG为△ABD的中位线∴OC∥AB,OG=,CG=(3)如图,连接OC交BD于G,由(2)可知:OC∥AB,OG=AB∴∠BHA=∠GCH在△BHA和△GHC中,∵∠BHA=∠GCH,AH=CH,∠BHA=∠GHC∴设,则又,∴,∵AD是的直径又【点睛】本题考查了圆周角定理,垂径定理的推论,全等三角形的判定和性质,相似三角形的判定和性质,以及勾股定理,是一道圆的综合问题,解题的关键是连接OC利用垂径定理得到中位线.22、(1)证明见解析;(2)90°;(3)AP=CE.【分析】(1)利用正方形得到AD=CD,∠ADP=∠CDP=45,即可证明全等;(2)设,利用三角形内角和性质及外角性质得到,,再利用周角计算得出x值;(3)AP=CE.设,利用三角形内角和性质及外角性质得到,,求出,得到是等边三角形,即可证得AP=CE.【详解】解:(1)四边形ABCD是正方形,∴AD=CD,∠ADP=∠CDP=45,在与中,,∴;(2)设,由(1)得,,因为PA=PE,所以所以;(3)AP=CE.设,由(1)得,,∵PA=PE且在菱形ABCD中,∴,∴,由(1)得PA=PC,∴PC=PE,∴是等边三角形,∴PE=PC=CE,∴AP=CE.【点睛】此题考查全等三角形的判定,正方形的性质,菱形的性质,三角形的内角和及外角性质,(2)与(3)图形有变化,解题思路不变,做题中注意总结解题的方法.23、(1)y1=,y1=﹣x+4;(1)4;(3)当x满足1<x<3、x<2时,则y1>y1.【分析】(1)把点A(1,3)代入y1=,求出k,得到反比例函数的解析式;再把B(3,m)代入反比例函数的解析式,求出m,得到点B的坐标,把A、B两点的坐标代入y1=ax+b,利用待定系数法求出一次函数的解析式;

(1)把x=2代入一次函数解析式,求出y1=4,得到C点的坐标,把y1=2代入一次函数解析式,求出x=4,得到D点坐标,再根据S△AOB=S△AOD-S△BOD,列式计算即可;

(3)找出一次函数落在反比例函数图象上方的部分对应的自变量的取值即可.【详解】解:(1)把点A(1,3)代入y1=,则3=,即k=3,故反比例函数的解析式为:y1=.把点B的坐标是(3,m)代入y1=,得:m==1,∴点B的坐标是(3,1).把A(1,3),B(3,1)代入y1=ax+b,得,解得,故一次函数的解析式为:y1=﹣x+4;(1)令x=2,则y1=4;令y1=2,则x=4,∴C(2,4),D(4,2),∴S△AOB=S△AOD﹣S△BOD=×4×3﹣×4×1=4;(3)由图像可知x<2、1<x<3时,一次函数落在反比例函数图象上方,故满足y1>y1条件的自变量的取值范围:1<x<3、x<2.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,三角形的面积,难度适中.利用了数形结合思想.24、(1)图见解析,y=-10x+1;(2)单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元;(3)单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.【分析】(1)从表格中的数据我们可以看出当x增加10时,对应y的值减小100,所以y与x之间可能是一次函数的关系,我们可以根据图象发现这些点在一条直线上,所以y与x之间是一次函数的关系,然后设出一次函数关系式,求出其关系式;(2)利用二次函数的知识求最大值;(3)根据函数的增减性,即可求得销售单价最高不能超过45元/件时的最大值.【详解】解:(1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(30,500)、(40,400)这两点,∴,解得∴函数关系式是:y=-10x+1.(2)设工艺厂试销该工艺品每天

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论