湖北省咸宁市中学高二数学理联考试题含解析_第1页
湖北省咸宁市中学高二数学理联考试题含解析_第2页
湖北省咸宁市中学高二数学理联考试题含解析_第3页
湖北省咸宁市中学高二数学理联考试题含解析_第4页
湖北省咸宁市中学高二数学理联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省咸宁市中学高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.双曲线的焦点坐标是()A. B. C.(0,±2) D.(±2,0)参考答案:C【考点】双曲线的简单性质.【分析】根据题意,由双曲线的标准方程分析可得其焦点位置以及c的值,由此可得其焦点坐标.【解答】解:根据题意,双曲线的方程为:,其焦点在y轴上,且c==2;则其焦点坐标为(0,±2),故选:C.2.p>0是抛物线y2=2px的焦点落在x轴上的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【考点】2L:必要条件、充分条件与充要条件的判断.【分析】p>0?抛物线y2=2px的焦点落在x轴上,反之不成立.【解答】解:p>0?抛物线y2=2px的焦点落在x轴上,反之不成立,例如取p=﹣1,则抛物线的焦点在x轴上.故选:A.3.设a,b是方程的两个不等实根,那么过点A(a,a2)和B(b,b2)的直线与圆x2+y2=1的位置关系是(

)A、相离

B、相切

C、相交

D、随θ的值而变化参考答案:B4.函数和的递增区间依次是(

)A.(-∞,0,(-∞,1

B.(-∞,0,[1,+∞C.[0,+∞,(-∞,1

D.[0,+∞),[1,+∞)参考答案:C略5.已知在△ABC中,角A,B,C分别为△ABC的三个内角,若命题p:sinA>sinB,命题q:A>B,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:C【考点】必要条件、充分条件与充要条件的判断.【分析】△ABC中,由正弦定理,a>b?sinA>sinB.而a>b?A>B.即可判断出结论.【解答】解:△ABC中,由正弦定理=k>0,a>b?ksinA>ksinB?sinA>sinB.而a>b?A>B.∴△ABC中,sinA>sinB?A>B,即p?q.∴p是q的充要条件.故选:C.6.已知椭圆的焦点为,,在长轴上任取一点,过作垂直于的直线交椭圆于点,则使得的点的概率为(

)A.

B.

C.

D.参考答案:B7.阅读右面的程序框图,则输出的S=(

)A.

14

B.

20

C.

30

D.55参考答案:D略8.函数的图像大致是参考答案:A9.已知一个边长为1的正方体的8个顶点都在同一球面上,则该球的直径为(

)A.1

B.

C.

D.2参考答案:C略10.不等式(x-2y+1)(x+y-3)<0表示的平面区域是(

参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知A为射线上的动点,B为x轴正半轴上的动点,若直线AB与圆相切,则|AB|的最小值为

.参考答案:12.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是

参考答案:13.i是虚数单位,若复数z=(m2﹣1)+(m﹣1)i为纯虚数,则实数m的值为

.参考答案:﹣1【考点】A2:复数的基本概念.【分析】根据纯虚数的定义可得m2﹣1=0,m﹣1≠0,由此解得实数m的值.【解答】解:∵复数z=(m2﹣1)+(m﹣1)i为纯虚数,∴m2﹣1=0,m﹣1≠0,解得m=﹣1,故答案为﹣1.14.与圆关于直线l:对称的圆的标准方程为______.参考答案:【分析】先求出圆C的圆心和半径,可得关于直线l:x+y﹣1=0对称的圆的圆心C′的坐标,从而写出对称的圆的标准方程.【详解】圆

圆心,设点C关于直线l:对称的点则有,即,解得,半径为,则圆C关于直线l:对称的圆的标准方程为,故答案为:.【点睛】本题主要考查圆的标准方程,点关于直线对称的性质,关键是利用垂直平分求得点关于直线的对称点,属于中档题.15.甲、乙两名篮球运动员在某几场比赛得分的茎叶图如图所示,则甲、乙两人这几场比赛得分的中位数之和是

.参考答案:64略16.在展开式中,如果第项和第项的二项式系数相等,则

.参考答案:

解析:17.设,若函数有大于零的极值点,则的取值范围__________.参考答案:a<-2

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.平面直角坐标系xOy中,过椭圆C:(a>b>0)右焦点的直线l:y=kx﹣k交C于A,B两点,P为AB的中点,当k=1时OP的斜率为.(Ⅰ)求C的方程;(Ⅱ)x轴上是否存在点Q,使得k变化时总有∠AQO=∠BQO,若存在请求出点Q的坐标,若不存在,请说明理由.参考答案:【考点】椭圆的简单性质.【专题】方程思想;分析法;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)将直线y=x﹣1代入椭圆方程,设A(x1,y1),B(x2,y2),运用韦达定理和中点坐标公式,解得a,b,进而得到椭圆方程;(Ⅱ)假设存在点Q设坐标为(m,0),联立直线方程和椭圆方程,运用韦达定理和直线的斜率公式,即可得到结论.【解答】解:(Ⅰ)因为l:y=kx﹣k过定点(1,0),所以c=1,a2=b2+1.当k=1时,直线l:y=kx﹣k,联立,设A(x1,y1),B(x2,y2),化简得(2b2+1)x2﹣2(b2+1)x+1﹣b4=0,则,于是,所以AB中点P的坐标为,OP的斜率为,所以b=1,.从而椭圆C的方程为;(Ⅱ)假设存在点Q设坐标为(m,0),联立,化简得:(2k2+1)x2﹣4k2x+2k2﹣2=0,所以,,直线AQ的斜率,直线BQ的斜率.,当m=2时,kAQ+kBQ=0,所以存有点Q(2,0),使得∠AQO=∠BQO.【点评】本题考查椭圆的方程的求法,注意运用联立直线和椭圆方程,运用中点坐标公式,考查存在性问题的解法,注意运用联立直线和椭圆方程,运用韦达定理和直线的斜率公式,考查化简整理的运算能力,属于中档题.19.命题双曲线的离心率,命题

在R上是增函数.若“或”为真,“且”为假,求的取值范围.参考答案:解:命题双曲线的离心率,所以双曲线,,

则……1分所以则即…………2分又因为,所以…………4分命题在R上是增函数,所以在R上恒成立.则…………….6分所以……………8分因为若“p或q”为真,“p且q”为假,所以p与q一真一假当p真q假时,,得……11分当p假q真时,,得…………………13分综上,,或……………………14分20.一汽车销售公司对开业5年来某种型号的汽车“五一”优惠金额与销售量之间的关系进行分析研究并做了记录,得到如下资料.日期第1年第2年第3年第4年第5年优惠金额x(千元)101113128销售量y(辆)2325302616该公司所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)若选取的是第1年与第5年的两组数据,请根据其余三年的数据,求出y关于x的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2辆,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?相关公式:=,.参考答案:【考点】BO:独立性检验的应用.【分析】(1)根据表中数据计算、,求出回归系数,写出线性回归方程;(2)由(1)中线性回归方程求出x=10时与x=8时y的值,比较误差即可.【解答】解:(1)根据表中数据,计算=×(11+13+12)=12,=×(25+30+26)=27,xiyi=(11×25+13×30+12×26)=977,=112+132+262=434,∴=,=27﹣2.5×12=﹣3,∴线性回归方程是;(2)由(1)知:当x=10时,y=2.5×10﹣3=22,误差不超过2辆;当x=8时,y=2.5×8﹣3=17,误差不超过2辆;故所求得的线性回归方程是可靠的.【点评】本题考查了线性回归方程的求法与应用问题,是基础题.21.(本小题满分12分)已知双曲线的渐近线方程为,为坐标原点,点在双曲线上.(1)求双曲线的方程;

(2)若直线与双曲线交于两点,且,求的最小值.参考答案:解:(1)双曲线的渐近线方程为

双曲线的方程可设为

点在双曲线上,可解得

双曲线的方程为………6分

(2)设直线的方程为,点将直线的方程代入双曲线的方程,可化为

………8分由即化简得

………10分当时,成立,且满足①又因为当直线垂直轴时,,所以的最小值是.略22.已知A,B,C是椭圆W:上的三个点,O是坐标原点.(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.参考答案:【考点】椭圆的简单性质.【分析】(I)根据B的坐标为(2,0)且AC是OB的垂直平分线,结合椭圆方程算出A、C两点的坐标,从而得到线段AC的长等于.再结合OB的长为2并利用菱形的面积公式,即可算出此时菱形OABC的面积;(II)若四边形OABC为菱形,根据|OA|=|OC|与椭圆的方程联解,算出A、C的横坐标满足=r2﹣1,从而得到A、C的横坐标相等或互为相反数.再分两种情况加以讨论,即可得到当点B不是W的顶点时,四边形OABC不可能为菱形.【解答】解:(I)∵四边形OABC为菱形,B是椭圆的右顶点(2,0)∴直线AC是BO的垂直平分线,可得AC方程为x=1设A(1,t),得,解之得t=(舍负)∴A的坐标为(1,),同理可得C的坐标为(1,﹣)因此,|AC|=,可得菱形OABC的面积为S=|AC|?|BO|=;(II)∵四边形OABC为菱形,∴|OA|=|OC|,设|OA|=|O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论