




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
勾股定理的应用数学来源于生活……服务于生活……精选
勾股定理(gou-gutheorem)如果直角三角形两直角边分别为a、b,斜边为c,那么即直角三角形两直角边的平方和等于斜边的平方。abc知识回味精选请同学们完成下面的练习1、在直角三角形ABC中,两条直角边a,b分别等于6和8,则斜边c等于()。2、直角三角形一直角边为9cm,斜边为15cm,则这个直角三角形的面积为()cm2
。3、一个等腰三角形的腰长为20cm,底边长为24cm,则底边上的高为()cm,面积为()cm2
。10课前热身5416192精选
在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处。你能告诉小明这棵树折断之前有多高吗?
问题18米6米ACB6米8米精选一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?说明理由问题二帮卡车司机排忧解难。
精选2.3米2米1.6米ABMEO┏CDH实际问题数学问题实物图形几何图形精选ABMEOC┏DH2米2.3米由图可知:CH=DH+CDOD=0.8米,OC=1米,CD⊥AB,
于是车能否通过这个问题就转化到直角△ODC中CD这条边上;探究不能能由于厂门宽度足够,所以卡车能否通过,只要看当卡车位于厂门正中间时其高度与CH值的大小比较。当车的高度﹥CH时,则车
通过当车的高度﹤CH时,则车
通过1.6米根据勾股定理得:CD=
=
=0.6(米)2.3+0.6=2.9﹥2.5∴卡车能通过。CH的值是多少,如何计算呢?精选如图,将长为10米的梯子AC斜靠在墙上,BC长为6米。
ABC106(1)求梯子上端A到墙的底端B的距离AB。(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?A1C1
2
3.巩固提高之灵活运用精选一位工人叔叔要装修家,需要一块长3m、宽2.1m的薄木板,已知他家门框的尺寸如图所示,那么这块薄木板能否从门框内通过?为什么?1m2m
挑战“试一试”:实际问题精选
门框的尺寸,薄木板的尺寸如图所示,薄木板能否从门框内通过?(
≈2.236)
思考1m2mADCB2.1米3米精选
一个门框的尺寸如图所示,一块长3m、宽2.1m的薄木板能否从门框内通过?为什么?1m2m
解答ADCB解:联结AC,在Rt△ABC中AB=2m,BC=1m∠B=90°,根据勾股定理:>2.1m∴薄木板能从门框内通过。精选1.如图,公园内有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了
步路(假设3步为1米),却踩伤了花草.超越自我3m4m路精选1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他算出来吗?ABC5米(X+1)米x米解设AC的长为X米,
则AB=(x+1)米过关斩将精选试一试:
在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?DABC精选AB例
如图所示,有一个高为12cm,底面半径为3cm的圆柱,在圆柱下底面的A点有一只蚂蚁,它想吃到圆柱上底面上与A点相对的B点处的食物,问这只蚂蚁沿着侧面需要爬行的最短路程为多少厘米?(的值取3)精选ACBAB精选拓展1
如果圆柱换成如图的棱长为10cm的正方体盒子,蚂蚁沿着表面需要爬行的最短路程又是多少呢?AB精选AB101010BCA精选拓展2
如果盒子换成如图长为3cm,宽为2cm,高为1cm的长方体,蚂蚁沿着表面需要爬行的最短路程又是多少呢?AB精选分析:蚂蚁由A爬到B过程中较短的路线有多少种情况?(1)经过前面和上底面;(2)经过前面和右面;(3)经过左面和上底面.AB23AB1C321BCA321BCA精选(1)当蚂蚁经过前面和上底面时,如图,最短路程为解:AB23AB1CAB===精选(2)当蚂蚁经过前面和右面时,如图,最短路程为AB321BCAAB===精选(3)当蚂蚁经过左面和上底面时,如图,最短路程为ABAB===321BCA精选2.如图,是一个三级台阶,它的每一级的长、宽、高分别为2m、0.3m、0.2m,A和B是台阶上两个相对的顶点,A点有一只蚂蚁,想到B点去吃可口的食物,问蚂蚁沿着台阶爬行到B点的最短路程是多少?20.30.2ABABC2m(0.2×3+0.3×3)m精选选作:
1.如图,长方形中AC=3,CD=5,DF=6,求蚂蚁沿表面从A爬到F的最短距离.356ACDEBF精选已知:如图,在△ABC中,∠ACB=90º,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.精选已知:如图,在中,,是边上的中线,于,
求证:.精选如图在锐角△ABC中,高AD=12,AC=13,BC=14求AB的长精选例5:台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- IFT27基因突变导致感光细胞外节退化引起视网膜色素变性的机制研究
- 薯蓣皂苷对口腔鳞癌细胞凋亡的实验研究
- 调神固本针法治疗轻中度抑郁障碍的临床研究
- 内部控制视角下A医院运营管理优化研究
- 青霉-链格孢菌共代谢天然产物和结构衍生物抗帕金森病模型细胞氧化损伤研究
- 移动应用开发行业趋势-全面剖析
- 高新技术在园艺培训中的应用-全面剖析
- 框架安全风险预测分析-全面剖析
- 跨国矿业公司财务比较-全面剖析
- 融资渠道与企业可持续发展-全面剖析
- 福建省龙岩市一级校2024-2025学年高二下学期4月期中联考 数学试题(含答案)
- 2025年街道全面加强乡村治理工作实施方案
- 明股实债协议合同
- 2025“十五五”金融规划研究白皮书
- 9.2法律保障生活(教案) -2024-2025学年统编版道德与法治七年级下册
- 2025年江西上饶铅山城投控股集团有限公司招聘笔试参考题库含答案解析
- 建筑工程结算审核现场踏勘
- 加油站防汛抗洪应急预案范本
- 融资岗专业考试题及答案
- 2025年高考物理模拟试卷1(贵州卷)及答案
- 胃癌课件完整版本
评论
0/150
提交评论