版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5三角形内角和定理第1课时1.掌握三角形内角和定理的证明及其简单应用.2.初步掌握利用辅助线证明,体会思维实验和符号化的理性作用.3.通过一题多解,初步体会思维的多向性,引导学生的个性化发展.1ABD23C如图,我们把∠A移到了∠1的位置,∠B移到了∠2的位置.就得到了三角形三个内角的和等于180°.根据前面的公理和定理,你能用自己的语言说说这一结论的证明思路吗?你能用比较简捷的语言写出这一证明过程吗?与同伴交流.已知:如图,△ABC.求证:∠A+∠B+∠C=180°.分析:延长BC到D,过点C作射线CE∥AB,这样,就相当于把∠A移到了∠1的位置,把∠B移到了∠2的位置.ABC证明:作BC的延长线CD,过点C作射线CE∥AB,则∠1=∠A(两直线平行,内错角相等),∠2=∠B(两直线平行,同位角相等).又∵∠1+∠2+∠3=180°(平角的定义),∴∠A+∠B+∠ACB=180°(等量代换).你还有其他方法来证明三角形内角和定理吗?这里的CD,CE称为辅助线,辅助线通常画成虚线.ABCE213D在证明三角形内角和定理时,小明的想法是把三个角“凑”到A处,他过点A作直线PQ∥BC(如图),他的想法可行吗?请你帮小明把想法化为实际行动.证明:过点A作PQ∥BC,则
∠1=∠B(两直线平行,内错角相等),
∠2=∠C(两直线平行,内错角相等),又∵∠1+∠2+∠3=180°(平角的定义),∴∠BAC+∠B+∠C=180°(等量代换).
小明的想法已经变为现实,由此你受到什么启发?你有新的证法吗?ABCPQ做一做231根据下面的图形,写出相应的证明.
你还能想出其他证法吗?(1)ABCPQRTSN(3)ABCPQRMTSN(2)ABCPQRM试一试ACB图1BAC图2BAC图3BAC图4先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图1),然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图2)、(图3),最后得到(图4)所示的结果.验证CBA如果BC不动,把点A“拉离”BC,那么当点A越来越远离BC时,∠A就越来越小(越来越接近0°),而∠B和∠C则越来越大,它们的和越来越接近180°,当把点A拉到无穷远时,便有AB∥AC,∠B和∠C成为同旁内角,它们的和等于180°.由此你能想到什么?
读一读CBA在△ABC中,如果BC不动,把点A“压”向BC,那么当点A越来越接近BC时,∠A就越来越大(越来越接近180°),而∠B和∠C越来越小(越来越接近0°).由此你能想到什么?用橡皮筋构成△ABC,其中顶点B,C为定点,A为动点,放松橡皮筋后,点A自动收缩于BC上,请同学们考察点A变化时所形成的一系列的三角形,其内角会产生怎样的变化呢?当点A远离BC时,∠A越来越趋近于0°,而AB与AC逐渐趋向平行,这时,∠B,∠C逐渐接近为互补的同旁内角,即∠B+∠C接近于180°.试一试结论1.(昆明·中考)如图所示,在△ABC中,CD是∠ACB的平分线,∠A=80°,∠B=60°,那么∠BDC=()A.80°B.90°C.100°D.110°2.(济宁·中考)若一个三角形三个内角度数的比为2∶3∶4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【解析】选B.由题意可设这个三角形的三个内角度数分别为2x,3x,4x,根据三角形内角和定理可得:2x+3x+4x=180°,得x=20°,因此可得三个内角度数分别为40°,60°,80°.3.(红河·中考)如图,D,E分别是AB,AC上的点,若∠A=70°,∠B=60°,DE∥BC,则∠AED的度数是____.【解析】因为∠A=70°,∠B=60°,所以∠C=50°,又因为DE//BC,所以∠AED=∠C=50°.答案:50°4.(郴州·中考)如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=___度.【解析】如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°.答案:2705.如图,在△ABC中,∠A=60°,∠B=70°,∠ACB的平分线交AB于D,DE∥BC交AC于E,求∠EDC和∠BDC的度数.【解析】∵∠A=60°,∠B=70°,∴∠ACB=180°-60°-70°=50°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=25°,∵DE∥BC,∴∠EDC=∠BCD=25°.在△BCD中,∠B=70°,∠BCD=25°,∴∠BDC=180°-70°-25°=85°.通过本课时的学习,需要我们掌握:1.三角形的内角和是180°.2.证明三角形内角和是180°,不仅可以通过实验操作验证,还可以通过严密的推理得到证明.通过平行线将三个内角拼在一起,得到一个平角或构造同旁内角是常用方法.要在座的人都停止了说话的时候,有了机会,方才可以谦逊地把问题提出,向人学习。
——约翰•洛克7二次根式第4课时1.会把二次根式化为被开方数相同的二次根式.2.理解和掌握二次根式简单的加减法.1.二次根式计算、化简的结果符合什么要求?
(1)被开方数不含分母;分母不含根号.
(2)被开方数中不含能开得尽方的因数或因式.2.化简下列各根式(2)(3)(4)(5)(6)(7)(8)下列3组根式各有什么特征?(1)(2)(3)每一组的几个二次根式化成最简二次根式以后,被开方数相同【例1】下列各式中哪些的被开方数相同?【例题】【解析】因为,,,.
所以
的被开方数相同.
的被开方数相同.的被开方数相同.【例2】计算【解析】【例题】...
与合并同类项类似,把被开方数相同的二次根式的系数相加减,做为结果的系数,根号及根号内部都不变.
二次根式加减运算的步骤:(1)将每个二次根式化为最简二次根式.(2)找出其中被开方数相同的二次根式.(3)合并被开方数相同的二次根式.一化二找三合并结论:在下列各组根式中,被开方数相同的是()A.B.D.【解析】选B.在选项B中,与被开方数相同.【跟踪训练】强调:先化简,再合并.【例3】计算:【解析】【例题】【解析】计算:【跟踪训练】1.下列计算正确的是()A.B.C.D.2.计算B3.(安徽·中考)计算
.
【解析】原式
答案:4.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年设备租赁合同模板
- 2025版酒店资产收购与股权置换合同范本3篇
- 2024新版光伏安装清工承包合同范本
- 2025年悬架系统:钢板弹簧项目发展计划
- 二零二五年度企业并购贷款担保合同模板3篇
- 2025版银行间存款居间业务佣金结算合同3篇
- 2025年液态食品无菌罐装设备合作协议书
- 2024年货运联盟:共同经营合作协议
- 2025年度水利工程三方施工协议6篇
- 2024招投标与合同管理实务操作与法规解读习题册3篇
- GB/T 45014-2024聚合物基复合材料层压板紧固件拉脱阻抗试验方法
- 传播学(东北林业大学)知到智慧树章节答案
- 2024年安全员之A证考试题库及完整答案(网校专用)
- 统编版2024-2025学年三年级上册语文期末情景测试卷 (无答案)
- 2024-2025学年人教新版九年级上册数学期末复习试卷(含详解)
- 绩效考核办法1
- 【MOOC】外科护理学-中山大学 中国大学慕课MOOC答案
- 年度学校办公室工作总结
- 2025版国家开放大学法律事务专科《民法学(2)》期末纸质考试总题库
- 生物人教版(2024版)生物七年级上册复习材料
- 企业地震应急预案管理方案
评论
0/150
提交评论