版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.2
第3课时总体集中趋势的估计第九章统计问题引入哪些量能刻画总体取值的特征?平均数、中位数、众数等,都是刻画“中心位置”的量,它们从不同角度刻画了一组数据的集中趋势.新知探索众数、中位数、平均数定义
新知探索总体集中趋势的估计(1)平均数和中位数都描述了数据的集中趋势,它们的大小关系和数据分布的形态有关.(2)对一个单峰的频率分布直方图来说,如果直方图的形状是对称的,那么平均数和中位数应该大体上差不多;如果直方图在右边“拖尾”,那么平均数大于中位数;如果直方图在左边“拖尾”,那么平均数小于中位数.也就是说,和中位数相比,平均数总是在“长尾巴”那边.(3)对数值型数据(如用水量、身高、收入、产量等)集中趋势的描述,可以用平均数、中位数;对分类型数据(如校服规格、性别、产品质量等级等)集中趋势的描述,可以用众数.(4)因为样本平均数与每一个样本数据有关,样本中的任何一个数据的改变都会引起平均数的改变.但中位数只利用了样本数据中间位置的一个或两个值,并未利用其他数据,所以不是任何一个样本数据的改变都会引起中位数的改变.所以平均数比中位数更敏感.众数只利用了出现次数最多的那个值的信息,只能传递数据中信息的很少一部分,对极端值不敏感.新知探索在频率分布直方图中估计平均数、中位数、众数(1)样本平均数可以用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和近似代替.(2)中位数左边和右边的直方图的面积应该相等.(3)频数最大的组对应区间中点,作为众数的估计值.典例精析题型一:众数、平均数、中位数的计算例1
(1)为了解我国13岁男孩的平均身高,从北方抽取了300个男孩,平均身高1.60m;从南方抽取了200个男孩,平均身高为1.50m.由此可推断我国13岁男孩的平均身高为 A.1.57m B.1.56m C.1.55m D.1.54m
(2)某学习小组在一次数学测验中,得100分的有1人,95分的有1人,90分的有2人,85分的有4人,80分和75分的各有1人,则该小组成绩的平均数、众数、中位数分别是 ,85,85
,85,86,85,85
,85,90解从小到大列出所有数学成绩:75,80,85,85,85,85,90,90,95,100,观察知众数和中位数均为85,计算得平均数为87.故选C.例2某公司的33名职工的月工资(以元为单位)如下表:(1)求该公司职工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为哪个统计量更能反映这个公司员工的工资水平?结合此问题谈一谈你的看法.
典例精析题型二:总体集中趋势的估计(1)估计高一参赛学生的成绩的众数、中位数.(2)估计高一参赛学生的平均成绩.解
(1)由图可知众数为65,因为第一个小矩形的面积为,所以设中位数为60+x,则0.3+x×0.04=,得x=5,所以估计中位数为60+5=65.(2)由已知,平均成绩为55×0.3+65×0.4+75×0.15+85×0.1+95×0.05=67,所以估计平均成绩为67.例3某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.(1)求这次测试数学成绩的众数;(2)求这次测试数学成绩的中位数;(3)求这次测试数学成绩的平均数.
跟踪练习1.已知一组数据按从小到大的顺序排列为14,19,x,23,27,其中位数是22,则x的值为(
)A.24 B.23C.22 D.21解一组数据按从小到大的顺序排列为14,19,x,23,27,则中位数是x.因为中位数是22,所以x=22.故选C.
3.如图是一次考试结果的统计图,根据该统计图可估计,这次考试的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川西南航空职业学院《视传艺术考察》2023-2024学年第一学期期末试卷
- 2024年花卉产业扶贫项目合作合同协议3篇
- 二零二五年度按揭贷款房屋改造贷款合同范本2篇
- 2024影视行业人才中介服务合同
- 二零二五版户外广告牌制作、安装与维护全流程服务合同3篇
- 绍兴文理学院元培学院《影视动画海报设计》2023-2024学年第一学期期末试卷
- 个人所得税代扣代缴协议(2024年版)
- 二零二五年度水泥管行业市场竞争策略合同
- 二零二五年度专业安保公司员工劳动合同范本2篇
- 山东轻工职业学院《期货投资》2023-2024学年第一学期期末试卷
- 《胃癌靶向治疗》课件
- 2024-2025学年辽宁省沈阳市高一上学期1月期末质量监测数学试题(含解析)
- 《少儿主持人》课件
- 北京市朝阳区2024-2025学年高二上学期期末考试生物试卷(含答案)
- 2025年西藏拉萨市柳梧新区城市投资建设发展集团有限公司招聘笔试参考题库附带答案详解
- 2025年部编版一年级语文上册期末复习计划
- 储罐维护检修施工方案
- 地理2024-2025学年人教版七年级上册地理知识点
- 2024 消化内科专业 药物临床试验GCP管理制度操作规程设计规范应急预案
- 2024-2030年中国电子邮箱行业市场运营模式及投资前景预测报告
- 基础设施零星维修 投标方案(技术方案)
评论
0/150
提交评论