




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省黄山市横关中学高二数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.的值等于(A)
(B)
(C)
(D)参考答案:A2.若a<b<c,a+b+c=0,则必有(
)A.ac<bc
B.ab<ac
C.ab<bc
D.ab2<ac2参考答案:A3.设椭圆的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为(
)A.
B.
C.
D.参考答案:B略4.直线与直线的距离是(
)A.
B.
C.
D.参考答案:A5.若命题p:所有有理数都是实数,q:正数的对数都是负数,则下列命题中为真命题的是(
)
A.
B.
C.D.参考答案:D6.在三棱锥P-ABC中,平面平面ABC,△ABC是边长为的等边三角形,,则该三棱锥外接球的表面积为(
)A. B.16π C. D.参考答案:A【分析】由题意,求得所以外接圆的半径为,且,所以,又由平面平面,得平面,且,进而利用在直角中,由正弦定理求得求得半径,利用球的表面积公式,即可求解.【详解】由题意,如图所示,因为是边长为的等边三角形,所以外接圆的半径为,且,所以,又由平面平面,,在等腰中,可得平面,且,在直角中,,且,在直角中,,在直角中,由正弦定理得,即球的半径为,所以球的表面积为,故选A.【点睛】本题考查了有关球的组合体问题,以及球的表面积的计算问题,解答时要认真审题,正确认识组合体的结构特征,注意组合体的性质的合理运用,合理求解球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.7.设两个正态分布和
的密度曲线如图所示,则有(A)
(B)
(C)
(D)参考答案:A8.已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是()A.1﹣ B.1﹣ C.1﹣ D.1﹣参考答案:C【考点】几何概型.【专题】概率与统计.【分析】分别求出该蚂蚁距离三角形的三个顶点的距离均超过2的对应事件的面积,利用几何概型的概率公式即可得到结论.【解答】解:∵三角形的三边长分别是5,5,6,∴三角形的高AD=4,则三角形ABC的面积S=×6×4=12,则该蚂蚁距离三角形的三个顶点的距离均超过2,对应的区域为图中阴影部分,三个小扇形的面积之和为一个整圆的面积的,圆的半径为2,则阴影部分的面积为S1=12﹣×π×22=12﹣2π,则根据几何概型的概率公式可得所求是概率为=1﹣,故选:C.【点评】本题主要考查几何概型的概率计算,根据条件求出相应的面积是解决本题的关键,考查转化思想以及计算能力.9.设函数,,若对任意实数,恒成立,则实数a的取值范围为(
)
A.
B.
C.
D.参考答案:D由题意,当时,,则,所以,所以,当时,,则,所以,所以,综上可得实数a的取值范围是,故选D.
10.已知直线,与平行,则k的值是(
)A.1或3
B.1或5
C.3或5
D.1或2参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知直线平面,直线平面,则直线的位置关系是▲_参考答案:a//b12.把4个小球随机地投入4个盒子中,设表示空盒子的个数,的数学期望=参考答案:81/6413.已知x∈R,[x]表示不超过x的最大整数,若函数有且仅有3个零点,则实数的取值范围是▲参考答案:14.若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是
.参考答案:3【考点】3H:函数的最值及其几何意义.【分析】根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.【解答】解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2x+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2x+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.15.在△ABC中,三个内角A,B,C所对的边分别是a,b,c,若b2=a2+ac+c2,则角B=
.参考答案:120°【考点】余弦定理的应用.【专题】计算题;转化思想;综合法;解三角形.【分析】根据题意由余弦定理b2=a2+c2﹣2accosB,可求得cosB的值,再利用B为△ABC中的角,即可求得B.【解答】解:∵在△ABC中,b2=a2+ac+c2,又b2=a2+c2﹣2accosB∴﹣2accosB=ac,∴cosB=﹣,又∠A为△ABC中的角,∴A=120°.故答案为:120°.【点评】本题考查余弦定理,考查学生记忆与应用公示的能力,属于基础题.16.已知直线⊥平面,直线平面,给出下列命题:①∥
②⊥
③⊥
④∥其中正确命题的序号是______________.参考答案:①③17.不等式的解集是
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示. (I)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成下列频率分布直方图;(Ⅱ)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(Ⅲ)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求:第4组至少有一名学生被考官A面试的概率?参考答案:(Ⅰ)由题意知,第2组的频数为人,第3组的频率为,频率分布直方图如下:(Ⅱ)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:人.第4组:人.
第5组:人,所以第3、4、5组分别抽取3人、2人、1人.(Ⅲ)设第3组的3位同学为,第4组的2位同学为,第5组的1位同学为,则从六位同学中抽两位同学有15种可能如下:其中第4组的2位同学至有一位同学入选的有:共9种.所以其中第4组的2位同学至少有一位同学入选的概率为
略19.如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.(I)证明:CD//AB;(II)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.参考答案:略20.(12分)(Ⅰ)求证:+<2(Ⅱ)已知a>0,b>0且a+b>2,求证:,中至少有一个小于2.参考答案:(Ⅰ)证明:因为和都是正数,所以为了证明,只要证
,只需证:,即证:
,即证:
,即证:
21,因为21<25显然成立,所以原不等式成立. ……………….6分(Ⅱ)证明:假设都不小于2,则
,
即
这与已知矛盾,故假设不成立,从而原结论成立.…………..6分21.如图,在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC的中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2(1)求证:BE∥平面PAD;(2)求证:平面PBC⊥平面PBD;(3)设Q为棱PC上一点,=λ,试确定λ的值使得二面角Q﹣BD﹣P为45°.参考答案:【考点】用空间向量求平面间的夹角;直线与平面平行的判定;平面与平面垂直的判定.【分析】(1)设PD的中点为F,连接EF,证明四边形FABE是平行四边形.利用直线与平面平行的判定定理证明BE∥平面PAD.(2)过点B作BH⊥CD于H,证明BC⊥BD.PD⊥BC,通过直线与平面垂直的判定定理证明BC⊥平面PBD,(文科)求解;(理科)利用直线与平面垂直的性质定理证明平面PBC平面PBD.(3)以D为原点,DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,求出相关点的坐标,平面PBD的法向量.平面QBD的法向量,通过二面角结合数量积求解λ即可.【解答】解:(1)证明:设PD的中点为F,连接EF,∵点E,F分别是△PCD的中点,∴EF∥CD,且,∴EF∥AB,且EF=AB,∴四边形FABE是平行四边形.∴BE∥AF,又AF?平面PAD,EF?平面PAD,∴BE∥平面PAD.(2)在梯形ABCD中,过点B作BH⊥CD于H,在△BCH中,BH=CH=1,∴∠BCH=45°.又在△DAB中,AD=AB=1,∴∠ADB=45°.∴∠BDC=45°,∴∠DBC=90°.∴BC⊥BD.∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,PD?平面PCD,∴PD⊥平面ABCD,∴PD⊥BC,又∵BD∩PD=D,BD?平面PBD,PD?平面PBD,∴BC⊥平面PBD,又BC?平面PBC,∴平面PBC⊥平面PBD.(3)以D为原点,DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,则P(0,0,1),C(0,2,0),A(1,0,0),B(1,1,0).令Q(x0,y0,z0),∵,Q(0,2λ,1﹣λ)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 植物繁殖方式与生存策略试题及答案
- 兽医研究方法与技术试题及答案
- 2024年陪诊师考试技巧分享与试题及答案
- 喂养技巧育婴师试题及答案
- 2024年陪诊师考试实务问题试题及答案
- 电商平台用户体验提升的方法试题及答案
- 注意事项与成功案例试题及答案
- 2024年育婴师人际沟通挑战试题及答案
- 2024年二月份战场易中天
- 2025年山西建筑安全员《C证》考试题库及答案
- 信用风险度量第六章-KMV模型课件
- 小学硬笔书法课教案(1-30节)
- 基于CAN通讯的储能变流器并机方案及应用分析报告-培训课件
- 医院清洁消毒与灭菌课件
- 消防安装工程施工方案Word版
- 软管管理规定3篇
- 关于对领导班子的意见和建议
- 【课件】学堂乐歌 课件-2022-2023学年高中音乐人音版(2019)必修音乐鉴赏
- 纳布啡在胃肠镜麻醉中的临床观察-课件
- 常用手术器械手工清洗
- 2022中西医执业医师实践技能疾病对照诊断内科
评论
0/150
提交评论