版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九年级数学基本知识点对世界上的一切学问与学问的把握也并非难事,只要持之以恒地学习,努力把握规律,达到熟识的境地,就能融会贯穿,运用自如。学习需要持之以恒。下面是我给大家整理的一些(九班级数学)的学问点,盼望对大家有所关心。
九班级下册数学学问点归纳
圆
★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆
一、圆的基本性质
1.圆的定义(两种)
2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理
4.垂径定理及其推论
5.“等对等”定理及其推论
6.与圆有关的角:⑴圆心角定义(等对等定理)
⑵圆周角定义(圆周角定理,与圆心角的关系)
⑶弦切角定义(弦切角定理)
二、直线和圆的位置关系
1.切线的性质(重点)
2.切线的判定定理(重点)
3.切线长定理
三、圆换圆的位置关系
1.五种位置关系及判定与性质:(重点:相切)
2.相切(交)两圆连心线的性质定理
3.两圆的公切线:⑴定义⑵性质
四、与圆有关的比例线段
1.相交弦定理
2.切割线定理
五、与和正多边形
1.圆的内接、外切多边形(三角形、四边形)
2.三角形的外接圆、内切圆及性质
3.圆的外切四边形、内接四边形的性质
4.正多边形及计算
中心角:学校数学复习提纲
内角的一半:学校数学复习提纲(右图)
(解Rt△OAM可求出相关元素,学校数学复习提纲、学校数学复习提纲等)
六、一组计算公式
1.圆周长公式
2.圆面积公式
3.扇形面积公式
4.弧长公式
5.弓形面积的计算(方法)
6.圆柱、圆锥的侧面绽开图及相关计算
七、点的轨迹
六条基本轨迹
八、有关作图
1.作三角形的外接圆、内切圆
2.平分已知弧
3.作已知两线段的比例中项
4.等分圆周:4、8;6、3等分
初三下册数学学问点(总结)
半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最便利。要想证明是切线,半径垂线认真辨。
是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。
假如遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。
若是添上连心线,切点确定在上面。要作等角添个圆,证明题目少困难。
帮助线,是虚线,画图留意勿转变。假如图形较分散,对称旋转去试验。
基本作图很关键,平常把握要娴熟。解题还要多心眼,常常总结方法显。
切勿盲目乱添线,方法敏捷应多变。分析综合方法选,困难再多也会减。
虚心勤学加苦练,成果上升成直线。
九班级上册数学复习学问点
一、轴对称与轴对称图形:
1.轴对称:把一个图形沿着某一条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:假如一个图形沿着一条直线折叠,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
留意:对称轴是直线而不是线段
3.轴对称的性质:
(1)关于某条直线对称的两个图形是全等形;
(2)假如两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;
(3)两个图形关于某条直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上;
(4)假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:
(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
留意:依据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:
(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.
(2)性质:①在角的平分线上的点到这个角的两边的距离相等.
②到一个角的两边距离相等的点,在这个角的平分线上.
留意:依据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.
6.等腰三角形的性质与判定:
性质:
(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;
(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合;
(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特别的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;
③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
判定定理:假如一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
7.等边三角形的性质与判定:
性质:(1)等边三角形的三个角都相等,并且每个角都等于60°;
(2)等边三角形具有等腰三角形的全部性质,并且在每条边上都有“三线合一”。因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。
判定定理:有一个角是60°的等腰三角形是等边三角形。
说明:等边三角形是一种特别的三角形,简单知道等边三角形的三条高(或三条中线、三条角平分线)都相等。
九班级数学基本学问点相关(文章):
★九班级数学上册重要学问点总结
★人教版九班级数学学问点归纳
★初
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《医疗行业简介》课件
- 《就英法联军远征中国致巴特勒上尉的信》第二课时人教版九年级语文上册课件
- 2015年重庆市B卷中考满分作文《我们携手走进青春》
- 《人才知识大全》课件
- 《房地产物业管理》课件
- 安全培训资料:20个固废-危废的常见违法行为
- 电力设施维护设备租赁合同协议
- 免租金书店租赁合同
- 医疗服务质量提升与客户关系
- 风力发电场护坡施工合同范本
- 毛泽东思想和中国特色社会主义理论体系概论智慧树知到课后章节答案2023年下德州学院
- 空调负荷自动计算表
- 商业模式画布模板
- 泪道冲洗操作程序及评分标准
- 为什么要努力学习
- 医院氧气泄漏的应急预案脚本
- 信用信息共享平台建设工作方案
- 老年抑郁量表(GDS)
- 小学英语-Im writing an email教学课件设计
- 如愿三声部合唱简谱
- 蒸汽云爆炸事故后果模拟分析法
评论
0/150
提交评论