湘教版八年级上册数学提纲_第1页
湘教版八年级上册数学提纲_第2页
湘教版八年级上册数学提纲_第3页
湘教版八年级上册数学提纲_第4页
湘教版八年级上册数学提纲_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湘教版八年级上册数学提纲在全部科目中,数学这个科目最重要错题本学习法,此外你还应当预备一份复习提纲,下面我给大家共享一些湘教版(八班级)上册数学提纲,盼望能够关心大家,欢迎阅读!

湘教版八班级上册数学提纲

(一)运用公式法

我们知道整式乘法与因式分解互为逆变形。假如把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

假如把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的(方法)叫做运用公式法。

(二)平方差公式

平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项假如有公因式应先提公因式,再进一步分解。

2.因式分解,必需进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应当先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必需分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

假如我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到这一步不叫把多项式分解因式,由于它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能连续分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)×(a+b).

学好数学的关键就在于要适时适量地进行(总结)归类,接下来我就为大家整理了这篇人教版(八班级数学)全等三角形学问点讲解,盼望可以对大家有所关心。

全等三角形的性质:全等三角形对应边相等、对应角相等。

全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(挨次和对应关系从已知推导出要证明的问题).

这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,假如把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.

(六)提公因式法

1.在运用提取公因式法把一个多项式因式分解时,首先观看多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设帮助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或转变符号,直到可确定多项式的公因式.

2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要留意:

1)必需先将常数项分解成两个因数的积,且这两个因数的代数和等于

一次项的系数.

2)将常数项分解成满意要求的两个因数积的多次尝试,一般步骤:

①列出常数项分解成两个因数的积各种可能状况;

②尝试其中的哪两个因数的和恰好等于一次项系数.

3)将原多项式分解成(x+q)(x+p)的形式.

(七)分式的乘除法

1.把一个分式的分子与分母的公因式约去,叫做分式的约分.

2.分式进行约分的目的是要把这个分式化为最简分式.

3.假如分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.假如分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.

4.分式约分中留意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简洁的分式之分子分母可直接乘方.

6.留意混合运算中应先算括号,再算乘方,然后乘除,最终算加减.

(八)分数的加减法

1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.

3.一般地,通分结果中,分母不绽开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作预备.

4.通分的依据:分式的基本性质.

5.通分的关键:确定几个分式的公分母.

通常取各分母的全部因式的次幂的积作公分母,这样的公分母叫做最简公分母.

6.类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.

9.同分母分式相加减,分母不变,只须将分子作加减运算,但留意每个分子是个整体,要适时添上括号.

10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.

11.异分母分式的加减运算,首先观看每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.

12.作为最终结果,假如是分式则应当是最简分式.

(九)含有字母系数的一元一次方程

含有字母系数的一元一次方程

引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,依据题意,可得方程ax=b(a≠0)

在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必需特殊留意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。

如何提高学校数学成果

数学基础学问的学习

想要把数学学好这记忆与理解的方法是必需要学会的。理解是一门必要学习的法则,只有理解精确     ,不跑题再结合方法就肯定能够解答。只要能很好的理解这个题目是怎样的结构,就可以很好的解出答案。在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,全部的公式不外乎都是结合了一些三角函数的定义与加法定理为基础方面上,在记忆数学公式的同时,你可以结合一些例题进行推理,从而可以更快加速你对这公式的理解与记忆。

数学解题

学数学必需是要脚踏实地的,没有那么多投机取巧的方法,数学练习要讲究高质量的和对症下药的方法。对于例题,要养成先分析再做题的习惯,遇到不懂可以先做好标记,然后再多跟同学老师沟通沟通。要尝试结合多种解题方式,要多练习。

错题集

针对做错的题目,列举出该题目全部的解题方法(可以从答案,或者同学,老师那里请教),总有一种是你能把握的。针对几套试卷讲解,即可有明显成效。一开头,看似每道题花很久才能了解全部解题方案,但是,成效是特别明显的。

作业

作业对于许多的同学来说都是不生疏的,一般老师在上完课之后都会布置一些作业,这样使上课所学的内容充分的运用出来,仅仅依靠上课听是不够的,还需要在下课之后进行练习来讲上课所学的学问巩固。

学校怎样学好数学

一、课前主动预习

首先学校数学一节课所学习的学问量比学校相比是多得多。再者许多学校阶段数学课所学习的内容,只要同学自己看看书完全都可以把握,但学校阶段的数学就完全不同,学问内容多,学问点也较为繁杂,所以需要同学们学会主动去预习,在课前的预习中,主动把握学问点的脉络,画出你已经把握的和有所怀疑的内容,在可让有的放矢的学习,有提前预习的脉络关心你快速跟上老师讲课的节奏,其次在预习中所画出的未懂内容更能关心你在课上着重理解和分析老师的思维和方法,这样才会让课堂变得高效,也让数学课的学习是有预备的进行,所以预习是学习学校数学的重要课前预备之一。

二、学会主动思索

笔者的许多同学反映过,他们在学校数学课堂上许多内容都能听懂,为什么课下拿到题目还是不会做。其实这个问题在笔者看来,是同学在课堂上听多思少的缘由造成的,许多同学在课堂上只会一味的听老师所讲,从来不会主动去思索老师为什么会产生这样的(思维方式),而恰恰数学就是培育同学的(规律思维)力量,一旦你只听不思,只会让学问的规律性关联性失去必要的思维痕迹,这就造成了你课下拿到题目还是无从下手。

三、擅长总结规律

讲这一点,笔者先举一个许多学校同学在数学学习上都会犯的一个错误,许多同学是不是同一种类型的题目总是反复错,常常错?错题笔记我也做了,为什么这种类型题换一种形式,我又错了?

其实,这种问题的消失,就是同学缺乏总结规律的习惯,一种类型的题目反复错,常常错,说明你还没有把握做这种题目的规律,你不仅要做错题笔记,而且还需要将你错的这种类型的题目都拿出来,类比总结,发觉你每次错在哪儿?是不是哪个学问点的把握有问题?还是其他缘由。要擅长总结规律,将同种类型的题目多比对,多总结,总结出一种属于自己的解题思路和方法,然后再遇到这类问题时利用总结的规律和方法去解决。所以同学们,你不仅要做错题笔记,而且要擅长总结规律,只有不断总结和归纳,思维才能不断提升,解题方法才

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论