![2021-2022学年重庆云阳县双江中学高二数学理测试题含解析_第1页](http://file4.renrendoc.com/view/3b17a5f035c4698cd1c1531a7260e5d3/3b17a5f035c4698cd1c1531a7260e5d31.gif)
![2021-2022学年重庆云阳县双江中学高二数学理测试题含解析_第2页](http://file4.renrendoc.com/view/3b17a5f035c4698cd1c1531a7260e5d3/3b17a5f035c4698cd1c1531a7260e5d32.gif)
![2021-2022学年重庆云阳县双江中学高二数学理测试题含解析_第3页](http://file4.renrendoc.com/view/3b17a5f035c4698cd1c1531a7260e5d3/3b17a5f035c4698cd1c1531a7260e5d33.gif)
![2021-2022学年重庆云阳县双江中学高二数学理测试题含解析_第4页](http://file4.renrendoc.com/view/3b17a5f035c4698cd1c1531a7260e5d3/3b17a5f035c4698cd1c1531a7260e5d34.gif)
![2021-2022学年重庆云阳县双江中学高二数学理测试题含解析_第5页](http://file4.renrendoc.com/view/3b17a5f035c4698cd1c1531a7260e5d3/3b17a5f035c4698cd1c1531a7260e5d35.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年重庆云阳县双江中学高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知直三棱柱的底面积为4。D、E、F分别是侧棱、、上的点,且AD=1,BE=2,CF=3,则多面体的体积等于(
).A.8
B.10
C.12
D.16参考答案:A2.若不等式的解集则a-b值是(
)A.-10
B.-14
C.10
D.14参考答案:A略3.命题“?x0∈(0,+∞),lnx0=x0﹣1”的否定是()A.?x0∈(0,+∞),lnx0≠x0﹣1 B.?x0?(0,+∞),lnx0=x0﹣1C.?x∈(0,+∞),lnx≠x﹣1 D.?x?(0,+∞),lnx=x﹣1参考答案:C【考点】命题的否定.【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:?x∈(0,+∞),lnx≠x﹣1,故选:C4.已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2) B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2) D.p1<p2,E(ξ1)<E(ξ2)参考答案:A【考点】离散型随机变量的期望与方差.【专题】概率与统计.【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选A【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.5.一个球的体积和表面积在数值上相等,则该球半径的数值为()A.1B.2C.3D.4参考答案:C略6.已知函数是定义在R上的奇函数,其最小正周期为3,且
(
)
A.4
B.2
C.
-2
D.参考答案:C7.如图,在棱长为的正方体中,为的中点,为上任意一
点,为上两点,且的长为定值,则下面四个值中不是定值的是(
)(A)点到平面的距离
(B)直线与平面所成的角(C)三棱锥的体积
(D)的面积参考答案:B考点:空间直线与平面的位置关系及几何体的体积面积的综合运用.【易错点晴】化归与转化的数学思想是高考所要考查的四大数学思想之一.本题以正方体这一简单几何体为背景,考查的是距离角度体积面积的定值问题的判定方法问题.求解时,首先要搞清楚面积是定值,其次是点到面的距离是个定值;这样就容易判定三棱锥的体积也是定值,从而选填答案B.8.已知集合,集合,并且,则的范围是A.
B.
C.
D.参考答案:A略9.命题“若x=2,则x2﹣3x+2=0”的逆否命题是()A.若x≠2,则x2﹣3x+2≠0 B.若x2﹣3x+2=0,则x=2C.若x2﹣3x+2≠0,则x≠2 D.若x≠2,则x2﹣3x+2=0参考答案:V【考点】四种命题间的逆否关系.【分析】根据命题“若p,则q”的逆否命题是“若¬q,则¬p”,写出它的逆否命题即可.【解答】解:命题“若x=2,则x2﹣3x+2=0”的逆否命题是“若x2﹣3x+2≠0,则x≠2”.故选:C.10.2019年6月7日,是我国的传统节日“端午节”。这天,小明的妈妈煮了7个粽子,其中3个腊肉馅,4个豆沙馅。小明随机抽取出两个粽子,若已知小明取到的两个粽子为同一种馅,则这两个粽子都为腊肉馅的概率为(
)A. B. C. D.参考答案:B【分析】设事件为“取出两个粽子为同一种馅”,事件为“取出的两个粽子都为腊肉馅”,计算(A)、的值,从而求得的值.【详解】由题意,设事件为“取出两个粽子为同一种馅”,事件为“取出的两个粽子都为腊肉馅”,则(A),,.故选:B.【点睛】本题主要考查古典概型和条件概率计算,意在考查学生对这些知识的理解掌握水平和计算能力.二、填空题:本大题共7小题,每小题4分,共28分11.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点E,F分别是棱BC,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面AEF,则线段A1P长度的取值范围是__________.参考答案:[]考点:直线与平面平行的性质.专题:空间位置关系与距离.分析:分别取棱BB1、B1C1的中点M、N,连接MN,易证平面A1MN∥平面AEF,由题意知点P必在线段MN上,由此可判断P在M或N处时A1P最长,位于线段MN中点处时最短,通过解直角三角形即可求得.解答:解:如下图所示:分别取棱BB1、B1C1的中点M、N,连接MN,连接BC1,∵M、N、E、F为所在棱的中点,∴MN∥BC1,EF∥BC1,∴MN∥EF,又MN?平面AEF,EF?平面AEF,∴MN∥平面AEF;∵AA1∥NE,AA1=NE,∴四边形AENA1为平行四边形,∴A1N∥AE,又A1N?平面AEF,AE?平面AEF,∴A1N∥平面AEF,又A1N∩MN=N,∴平面A1MN∥平面AEF,∵P是侧面BCC1B1内一点,且A1P∥平面AEF,则P必在线段MN上,在Rt△A1B1M中,A1M===,同理,在Rt△A1B1N中,求得A1N=,∴△A1MN为等腰三角形,当P在MN中点O时A1P⊥MN,此时A1P最短,P位于M、N处时A1P最长,A1O===,A1M=A1N=,所以线段A1P长度的取值范围是[].故答案为:[].点评:本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P点位置12.已知圆与圆关于直线对称,则直线的一般式方程是
参考答案:13.设函数,观察下列各式:,,,,…,,……,根据以上规律,若,则整数n的最大值为
.参考答案:9由题意,所给的函数式的分子不变都是x,而分母是由两部分的和组成,第一部分的系数分别是1,3,7,15…2n﹣1,第二部分的数分别是2,4,8,16…2n.∴fn(x)=f(fn﹣1(x))=,∴fn()=.∴,∴,∴整数的最大值为9.故填9.
14.若满足,则的取值范围是。参考答案:略15.(5分)(2011?延安模拟)若,则的值为.参考答案:对于,令x=1得令x=﹣1得两式相乘得1=,故答案为1通过对x分别赋值1,﹣1,求出各项系数和和正负号交替出现的系数和,两式相乘得解.16.平面内一动点到两定点的距离之和为10,则动点的轨迹方程是
.参考答案:
17.设命题p:实数x满足x2﹣4ax+3a2<0,其中a<0;命题q:实数x满足x2+2x﹣8>0且q是p的必要不充分条件,则实数a的取值范围是. 参考答案:(﹣∞,﹣4]【考点】必要条件、充分条件与充要条件的判断. 【专题】简易逻辑. 【分析】首先,将命题q化简,然后,结合q是p的必要不充分条件,确定实数a的取值范围. 【解答】解:由命题q:实数x满足x2+2x﹣8>0, 得x<﹣4或x>2, 由命题p:实数x满足x2﹣4ax+3a2<0,其中a<0; 得(x﹣3a)(x﹣a)<0, ∵a<0, ∴3a<x<a, ∵q是p的必要不充分条件, ∴a≤﹣4, ∴a∈(﹣∞,﹣4]. 【点评】本题主要考查一元二次不等式的解法、充分条件、必要条件和充要条件的判断等知识,属于中档题. 三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知一个袋子里装有颜色不同的6个小球,其中白球2个,黑球4个,现从中随机取球,每次只取一球.(1)若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;(2)若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到5次就终止游戏,记游戏结束时一共取球次,求随机变量的分布列与期望.参考答案:(1);(2)分布列见解析,.试题分析:(1)借助题设条件运用独立充分试验的概率公式求解;(2)借助题设条件随机变量的数学期望公式求解.试题解析:(1)记事件表示“第i次取到白球”(),事件表示“连续取球四次,至少取得两次白球”,则:.
2分………4分………5分另解:记随机变量表示连续取球四次,取得白球的次数.易知………2分则…………5分∴随机变量X的分布列为:X2345P∴随机变量X的期望为:…13分考点:独立充分试验的概率计算公式和随机变量的数学期望计算公式等有关知识的综合运用.19.已知坐标平面上三点,过点C作AB的平行线交x轴于点D.(Ⅰ)求点D的坐标;(Ⅱ)求四边形ABCD的面积.参考答案:(Ⅰ)由及AB∥CD知,
…2分直线CD的方程为,即
……4分令得
………………6分(Ⅱ)因,AB∥CD,故四边形ABCD为梯形
………10分点到直线的距离为
………………13分所以四边形ABCD的面积
………………15分20.(本小题满分13分)是否存在常数,使等式对于一切都成立?若不存在,说明理由;若存在,请用数学归纳法证明?(提示:可先令n=1,2探求出a,b的值再证明)参考答案:解:若存在常数使等式成立,则将代入上式,有得,即有
对于一切成立………4分证明如下:(1)当时,左边=,右边=,所以等式成立
…………6分(2)假设时等式成立,即
当时,=====也就是说,当时,等式成立,
综上所述,可知等式对任何都成立。
…………13分21.已知直线l是经过点且与抛物线相切的直线.(1)求直线l的方程(2)如图,已知点,M,N是x轴上两个不同的动点,且满足,直线BM,BN与抛物线E的另一个交点分别是P,Q,求证:直线PQ与l平行.参考答案:(1)(2)见证明【分析】(1)先由题意可得直线的斜率存在且不为,设直线的方程为:,联立直线与抛物线方程,根据判别式为0,即可求出斜率,得到直线方程;(2)先由题意得到,两直线的斜率互为相反数,设直线的方程为,与抛物线方程联立得到点坐标,同理得到点坐标,进而计算,即可得出结论成立.【详解】解:(1)显然直线的斜率存在且不为,设直线的方程为:与联立,消去整理得,,令,即,解得,所以,直线的方程为.(2)由题意知,两直线的斜率互为相反数,设直线的方程为,与联立,消去整理得,则,从而,将换成,得,,所以,直线与平行.【点睛】本题主要考查直线与抛物线的综合,通常需要联立直线与抛物线方程,结合判别式、斜率公式等求解,属于常考题型.22.某种汽车购买时费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,…,依等差数列逐年递增.(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).参考答案:【考点】根据实际问题选择函数类型;基本不等式在最值问题中的应用;数列的应用.【专题】计算题;应用题.【分析】(I)由已知中某种汽车购买时费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,…,依等差数列逐年递增,根据等差数列前n项和公式,即可得到f(n)的表达式;(II)由(I)中使用n年该车的总费用,我们可以得到n年平均费
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4藏戏教学设计-2023-2024学年六年级下册语文统编版
- Unit 4 Section B 2a-2e 教学设计 2024-2025学年人教版八年级英语下册
- 2024年度湖南省国家保安员资格考试真题练习试卷B卷附答案
- Starter Introduce yourself第一课时 reading for writing 教学设计 2024-2025学年外研版(2024)七年级英语上册
- 1 多功能课表(教学设计)苏教版一年级下册综合实践活动
- 2025至2031年中国钛金属铸造支架行业投资前景及策略咨询研究报告
- 2025至2031年中国联结设备行业投资前景及策略咨询研究报告
- 论悲剧女性角色的塑造
- 复合材料固化变形预测及模具型面优化
- 采购部管理制度及流程
- 防涉黄课件教学课件
- 家政公司服务员考试题库单选题100道及答案解析
- 人工智能:AIGC基础与应用 课件 实训项目九 使用度加创作工具和剪映进行智能化短视频创作
- 企业人才招聘与选拔方法论研究
- 《日影的朝向及长短》课件
- 中职普通话教师教案模板
- 《MATLAB编程及应用》全套教学课件
- T-CCSAS 001-2018 危险与可操作性分析(HAZOP分析)质量控制与审查导则
- GB/T 11263-2024热轧H型钢和剖分T型钢
- 医疗器械软件研究报告 适用嵌入式和桌面式 2023版
- 果园轨道运输施工方案
评论
0/150
提交评论