版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
通化市重点中学2024年数学高三上期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的面积是,,,则()A.5 B.或1 C.5或1 D.2.如图,在棱长为4的正方体中,E,F,G分别为棱AB,BC,的中点,M为棱AD的中点,设P,Q为底面ABCD内的两个动点,满足平面EFG,,则的最小值为()A. B. C. D.3.设则以线段为直径的圆的方程是()A. B.C. D.4.已知非零向量,满足,,则与的夹角为()A. B. C. D.5.已知等比数列满足,,则()A. B. C. D.6.已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为()A. B. C. D.7.已知复数满足(其中为的共轭复数),则的值为()A.1 B.2 C. D.8.已知,则下列说法中正确的是()A.是假命题 B.是真命题C.是真命题 D.是假命题9.若不等式对于一切恒成立,则的最小值是()A.0 B. C. D.10.以下关于的命题,正确的是A.函数在区间上单调递增B.直线需是函数图象的一条对称轴C.点是函数图象的一个对称中心D.将函数图象向左平移需个单位,可得到的图象11.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()A. B. C. D.12.已知是的共轭复数,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,角,,的对边分别为,,.若;且,则周长的范围为__________.14.下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,兄弟”的调查数据,人数如下表所示:不喜欢喜欢男性青年观众4010女性青年观众3080现要在所有参与调查的人中用分层抽样的方法抽取个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了8人,则的值为______.15.已知是夹角为的两个单位向量,若,,则与的夹角为______.16.如图,在平行四边形中,,,则的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,⊙的直径的延长线与弦的延长线相交于点,为⊙上一点,,交于点.求证:~.18.(12分)已知命题:,;命题:函数无零点.(1)若为假,求实数的取值范围;(2)若为假,为真,求实数的取值范围.19.(12分)(某工厂生产零件A,工人甲生产一件零件A,是一等品、二等品、三等品的概率分别为,工人乙生产一件零件A,是一等品、二等品、三等品的概率分别为.己知生产一件一等品、二等品、三等品零件A给工厂带来的效益分别为10元、5元、2元.(1)试根据生产一件零件A给工厂带来的效益的期望值判断甲乙技术的好坏;(2)为鼓励工人提高技术,工厂进行技术大赛,最后甲乙两人进入了决赛.决赛规则是:每一轮比赛,甲乙各生产一件零件A,如果一方生产的零件A品级优干另一方生产的零件,则该方得分1分,另一方得分-1分,如果两人生产的零件A品级一样,则两方都不得分,当一方总分为4分时,比赛结束,该方获胜.Pi+4(i=4,3,2,…,4)表示甲总分为i时,最终甲获胜的概率.①写出P0,P8的值;②求决赛甲获胜的概率.20.(12分)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,,为等边三角形,平面平面ABCD,M,N分别是线段PD和BC的中点.(1)求直线CM与平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)试判断直线MN与平面PAB的位置关系,并给出证明.21.(12分)在中,、、分别是角、、的对边,且.(1)求角的值;(2)若,且为锐角三角形,求的取值范围.22.(10分)设函数,直线与函数图象相邻两交点的距离为.(Ⅰ)求的值;(Ⅱ)在中,角所对的边分别是,若点是函数图象的一个对称中心,且,求面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】∵,,∴①若为钝角,则,由余弦定理得,解得;②若为锐角,则,同理得.故选B.2、C【解题分析】
把截面画完整,可得在上,由知在以为圆心1为半径的四分之一圆上,利用对称性可得的最小值.【题目详解】如图,分别取的中点,连接,易证共面,即平面为截面,连接,由中位线定理可得,平面,平面,则平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方体中平面,从而有,∴,∴在以为圆心1为半径的四分之一圆(圆在正方形内的部分)上,显然关于直线的对称点为,,当且仅当共线时取等号,∴所求最小值为.故选:C.【题目点拨】本题考查空间距离的最小值问题,解题时作出正方体的完整截面求出点轨迹是第一个难点,第二个难点是求出点轨迹,第三个难点是利用对称性及圆的性质求得最小值.3、A【解题分析】
计算的中点坐标为,圆半径为,得到圆方程.【题目详解】的中点坐标为:,圆半径为,圆方程为.故选:.【题目点拨】本题考查了圆的标准方程,意在考查学生的计算能力.4、B【解题分析】
由平面向量垂直的数量积关系化简,即可由平面向量数量积定义求得与的夹角.【题目详解】根据平面向量数量积的垂直关系可得,,所以,即,由平面向量数量积定义可得,所以,而,即与的夹角为.故选:B【题目点拨】本题考查了平面向量数量积的运算,平面向量夹角的求法,属于基础题.5、B【解题分析】由a1+a3+a5=21得a3+a5+a7=,选B.6、A【解题分析】
先求得椭圆焦点坐标,判断出直线过椭圆的焦点.然后判断出,判断出点的轨迹方程,根据恒在椭圆内列不等式,化简后求得离心率的取值范围.【题目详解】设是椭圆的焦点,所以.直线过点,直线过点,由于,所以,所以点的轨迹是以为直径的圆.由于点在椭圆内恒成立,所以椭圆的短轴大于,即,所以,所以双曲线的离心率,所以.故选:A【题目点拨】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.7、D【解题分析】
按照复数的运算法则先求出,再写出,进而求出.【题目详解】,,.故选:D【题目点拨】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.8、D【解题分析】
举例判断命题p与q的真假,再由复合命题的真假判断得答案.【题目详解】当时,故命题为假命题;记f(x)=ex﹣x的导数为f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,∴f(x)>f(0)=1>0,即,故命题为真命题;∴是假命题故选D【题目点拨】本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.9、C【解题分析】
试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论.解:不等式x2+ax+1≥0对一切x∈(0,]成立,等价于a≥-x-对于一切成立,∵y=-x-在区间上是增函数∴∴a≥-∴a的最小值为-故答案为C.考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题10、D【解题分析】
利用辅助角公式化简函数得到,再逐项判断正误得到答案.【题目详解】A选项,函数先增后减,错误B选项,不是函数对称轴,错误C选项,,不是对称中心,错误D选项,图象向左平移需个单位得到,正确故答案选D【题目点拨】本题考查了三角函数的单调性,对称轴,对称中心,平移,意在考查学生对于三角函数性质的综合应用,其中化简三角函数是解题的关键.11、A【解题分析】
列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有,利用古典概型求解即可.【题目详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为.故选:A.【题目点拨】本题主要考查了古典概型,基本事件,属于容易题.12、A【解题分析】
先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.【题目详解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故选:A.【题目点拨】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先求角,再用余弦定理找到边的关系,再用基本不等式求的范围即可.【题目详解】解:所以三角形周长故答案为:【题目点拨】考查正余弦定理、基本不等式的应用以及三条线段构成三角形的条件;基础题.14、32【解题分析】
由已知可得抽取的比例,计算出所有被调查的人数,再乘以抽取的比例即为分层抽样的样本容量.【题目详解】由题可知,抽取的比例为,被调查的总人数为人,则分层抽样的样本容量是人.故答案为:32【题目点拨】本题考查分层抽样中求样本容量,属于基础题.15、【解题分析】
依题意可得,再根据求模,求数量积,最后根据夹角公式计算可得;【题目详解】解:因为是夹角为的两个单位向量所以,又,所以,,所以,因为所以;故答案为:【题目点拨】本题考查平面向量的数量积的运算律,以及夹角的计算,属于基础题.16、【解题分析】
根据ABCD是平行四边形可得出,然后代入AB=2,AD=1即可求出的值.【题目详解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案为:﹣1.【题目点拨】本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查了计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析【解题分析】
根据相似三角形的判定定理,已知两个三角形有公共角,题中未给出线段比例关系,故可根据判定定理一需找到另外一组相等角,结合平面几何的知识证得即可.【题目详解】证明:∵,所以,又因为,所以.在与中,,,故~.【题目点拨】本题考查平面几何中同弧所对的圆心角与圆周角的关系、相似三角形的判定定理;考查逻辑推理能力和数形结合思想;分析图形,找出角与角之间的关系是证明本题的关键;属于基础题.18、(1)(2)【解题分析】
(1)为假,则为真,求导,利用导函数研究函数有零点条件得的取值范围;(2)由为假,为真,知一真一假;分类讨论列不等式组可解.【题目详解】(1)依题意,为真,则无解,即无解;令,则,故当时,,单调递增,当,,单调递减,作出函数图象如下所示,观察可知,,即;(2)若为真,则,解得;由为假,为真,知一真一假;若真假,则实数满足,则;若假真,则实数满足,无解;综上所述,实数的取值范围为.【题目点拨】本题考查根据全(特)称命题的真假求参数的问题.其思路:与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题.解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或范围.19、(1)乙的技术更好,见解析(2)①,;②【解题分析】
(1)列出分布列,求出期望,比较大小即可;(2)①直接根据概率的意义可得P0,P8;②设每轮比赛甲得分为,求出每轮比赛甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差数列,根据可得答案.【题目详解】(1)记甲乙各生产一件零件给工厂带来的效益分别为元、元,随机变量,的分布列分别为10521052所以,,所以,即乙的技术更好(2)①表示的是甲得分时,甲最终获胜的概率,所以,表示的是甲得4分时,甲最终获胜的概率,所以;②设每轮比赛甲得分为,则每轮比赛甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得时,最终获胜有以下三种情况:(1)下一轮得1分并最终获胜,概率为;(2)下一轮得0分并最终获胜,概率为;(3)下一轮得分并最终获胜,概率为;所以,所以是等差数列,则,即决赛甲获胜的概率是.【题目点拨】本题考查离散型随机变量的分布列和期望,考查数列递推关系的应用,是一道难度较大的题目.20、(1)(2)(3)直线平面,证明见解析【解题分析】
取中点,连接,则,再由已知证明平面,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,求出平面的一个法向量.(1)求出的坐标,由与所成角的余弦值可得直线与平面所成角的正弦值;(2)求出平面的一个法向量,再由两平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐标,由,结合平面,可得直线平面.【题目详解】底面是边长为2的菱形,,为等边三角形.取中点,连接,则,为等边三角形,,又平面平面,且平面平面,平面.以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系.则,,,,1,,,0,,,,,,0,,,,,,,.,,设平面的一个法向量为.由,取,得.(1)证明:设直线与平面所成角为,,则,即直线与平面所成角的正弦值为;(2)设平面的一个法向量为,由,得二面角的余弦值为;(3),,又平面,直线平面.【题目点拨】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年范文脚手架合同
- 施工分包合同范本
- 个人贷款还款协议文本
- 有关知识产权担保协议
- 城市管道燃气特许经营权协议
- 房产赠与合同说明
- 商品转让协议书2024年版
- 旅行社与旅游策划公司合作合同
- 下岗协议书范本
- 简单楼房出租合同
- 电线装配制程cableassemblyprocessinstruction
- 幼儿园中班语言《谁偷吃了》课件1
- 普通高中数学课程标准
- 重度残疾儿童小学送教上门工作计划
- 科创板问题测试题库300题试题及答案
- 4.2特异性免疫说课课件2021-2022学年高二上学期生物人教版选择性必修1
- 网络安全安全事件(事故)处置记录表
- 电气可编程控制原理与应用习题解答
- 部编人教版六年级上册小学语文课件 第4单元快乐读书吧:笑与泪经历与成长
- 新沪科版七年级上册初中数学全册教案
- 零星维修工程项目施工方案
评论
0/150
提交评论