版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省常德市鼎城区港二口乡中学2022年高三数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.给出30个数:1,2,4,7,11,……其规律是:第一个数是1,第二个数比第一个数大1,第三个数比第二个数大2,第四个数比第三个数大3,……以此类推,要计算这30个数的和,现已给出了该问题的程序框图如右图所示,那么框图中判断框①处和执行框②处应分别填入A.
B.
C.
D.参考答案:D2.数列的首项为,为等差数列且.若则,,则(
)A.
B.
C.
D.参考答案:B3.设正项等比数列{an}的前n项和为Sn,且<1,若a3+a5=20,a3a5=64,则S4=()A.63或126 B.252 C.120 D.63参考答案:C【考点】等比数列的通项公式.【分析】根据a3+a5=20,a3a5=64构造出一元二次方程求得a3和a5,则a1和q可求得,最后求得答案.【解答】解:∵<1,∴0<q<1,∵a3a5=64,a3+a5=20,∴a3和a5为方程x2﹣20x+64=0的两根,∵an>0,0<q<1,∴a3>a5,∴a3=16,a5=4,∴q=,∴a1=64,a2=32,a3=16,a4=8,∴S4=a1+a2+a3+a4=64+32+16+8=120,故选:C4.执行如图所示的程序框图,则输出的S=(
)A.1023 B.512 C.511 D.255参考答案:C【考点】程序框图.【专题】对应思想;试验法;算法和程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出该程序运行后输出的S值.【解答】解:模拟程序框图的运行过程,得出该程序运行后输出的是:S=2°+21+22+23+…+28==29﹣1=511.故选:C.【点评】本题考查了程序框图的应用问题,也考查了数列求和的应用问题,是基础题目.5.若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为S1、S2,则S1:S2=()A.1:1B.2:1C.3:2D.4:1参考答案:C
考点:球的体积和表面积.专题:计算题.分析:根据圆柱的底面直径和高都与球的直径相等,设为球的半径为1,结合圆柱的表面积的公式以及球的表面积即可得到答案.解答:解:由题意可得:圆柱的底面直径和高都与球的直径相等,设球的半径为1,所以等边圆柱的表面积为:S1=6π,球的表面积为:S2=4π.所以圆柱的表面积与球的表面积之比为S1:S2=3:2.故选C.点评:本题考查几何体的表面积,考查计算能力,特殊值法,在解题中有是有独到功效,是基础题.6.执行如图所示的程序框图,若输入的a,b分别为36,28,则输出的a=()A.4 B.8 C.12 D.20参考答案:A【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=4,b=4时,不满足条件a≠b,退出循环,输出a的值.【解答】解:第一次循环,a=36,b=28,a>b,a=8;第二次循环,a=8,b=28,a<b,b=20;第三次循环,a=8,b=20,a<b,b=12;第四次循环,a=8,b=12,a<b,b=4,第五次循环,a=8,b=4,a>b,a=4,第六次循环,a=4,b=4,a=b,不满足条件a≠b,退出循环,输出a=4,故选:A.【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的a,b的值是解题的关键,属于基本知识的考查.7.已知的最大值为
(
)
A.0
B.
C.2
D.无最大值参考答案:B略8.已知定义在上的函数满足,当时,,其中,若方程恰有3个不同的实数根,则的取值范围为
(
)A.(0,)
B.(,2)
C.(,3)
D.(,+∞) 参考答案:B略9.设l,m,n为不重合的三条直线,其中直线m,n在平面α内,则“l⊥α”是“l⊥m且l⊥n”的
A.充要条件
B.充分不必要条件
C.既不充分也不必要条件
D.必要不充分条件
参考答案:B10.如图,已知在ΔABC中,BC=2,以BC为直径的圆分别交AB,AC于点M,N,MC与NB交于点G,若,则,的度数为(A)135°
(B)120°(C)150。
(D)105°参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若,则_________.参考答案:【分析】利用同角的基本关系式,可得,代入所求,结合辅助角公式,即可求解。【详解】因为,,所以,所以,故答案为【点睛】本题考查同角三角函数的基本关系式,辅助角公式,考查计算化简的能力,属基础题12.设a,b,c是三条不同直线,,,是三个不同平面,给出下列命题:①若,,则;②若a,b异面,,,,,则;③若,,,且,则;④若a,b为异面直线,,,,,则.其中正确的命题是
参考答案:②③④13.已知直线l过点,且与曲线相切,则直线的方程为________。参考答案:略14.已知△ABC中,AB+AC=6,BC=4,D为BC的中点,则当AD最小时,△ABC的面积为.参考答案:【考点】余弦定理的应用;三角形的面积公式.【分析】根据余弦定理可得:AC2=AD2+22﹣4AD?cos∠ADC,且,进而,结合二次函数的图象和性质,可得AC=2时,AD取最小值,由余弦定理求出cos∠ACB,进而求出sin∠ACB,代入三角形面积公式,可得答案.【解答】解:∵AB+AC=6,BC=4,D为BC的中点,根据余弦定理可得:AC2=AD2+CD2﹣2AD?CD?cos∠ADC,且AB2=AD2+BD2﹣2AD?BD?cos∠ADB,即AC2=AD2+22﹣4AD?cos∠ADC,且,∵∠ADB=π﹣∠ADC,∴,∴,当AC=2时,AD取最小值,此时cos∠ACB==,∴sin∠ACB=,∴△ABC的面积S=AC?BC?sin∠ACB=,故答案为:.【点评】本题考查的知识点是余弦定理的应用,三角形面积公式,同角三角函数的基本关系,难度中档.15.一个几何体的三视图如图所示,则该几何体的体积为
.
参考答案:16.是抛物线上一点,是抛物线的焦点,为坐标原点.若是抛物线的准线与轴的交点,则
.参考答案:45°由抛物线的对称性不妨设,则,得,法一:,在中,,所以.法二:因为,所以,可得,,所以.
17.已知球与棱长均为2的三棱锥各条棱都相切,则该球的表面积为.参考答案:2π【考点】球内接多面体;球的体积和表面积.【分析】如图,将三棱锥放入棱长为的正方体,可得正方体的内切球恰好是与三棱锥各条棱都相切的球,根据三棱锥棱长算出正方体的棱长为,由此算出内切球半径,用公式即可得到该球的表面各.【解答】解:将棱长均为2的三棱锥放入棱长为的正方体,如图∵球与三棱锥各条棱都相切,∴该球是正方体的内切球,切正方体的各个面切于中心,而这个切点恰好是三棱锥各条棱与球的切点由此可得该球的直径为,半径r=∴该球的表面积为S=4πr2=2π故答案为:2π三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.12分)已知四棱锥的底面为直角梯形,,底面,且,是的中点.(Ⅰ)证明:面面;(Ⅱ)求与所成的角余弦值;(Ⅲ)求面与面所成二面角的余弦值.
参考答案:证明:以为坐标原点长为单位长度,如图建立空间直角坐标系,则各点坐标为.(Ⅰ)证明:因由题设知,且与是平面内的两条相交直线,由此得面.又在面上,故面⊥面.
(Ⅱ)解:因
(Ⅲ)解:在上取一点,则存在使MC,只需解得为所求二面角的平面角.19.(13分)如图,在平面直角坐标系xOy中,椭圆的焦距为2,且过点.(1)求椭圆E的方程;(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.参考答案:【考点】:直线与圆锥曲线的关系;直线的一般式方程与直线的垂直关系;椭圆的标准方程.【专题】:圆锥曲线的定义、性质与方程.【分析】:(1)利用椭圆的标准方程及参数a,b,c之间的关系即可求出;(2)(i)利用斜率的计算公式、三点共线的斜率性质、点在椭圆上的性质即可证明;(ii)利用直线的点斜式及其(i)的有关结论即可证明.解:(1)由题意得2c=2,∴c=1,又,a2=b2+1.消去a可得,2b4﹣5b2﹣3=0,解得b2=3或(舍去),则a2=4,∴椭圆E的方程为.(2)(ⅰ)设P(x1,y1)(y1≠0),M(2,y0),则,,∵A,P,M三点共线,∴,∴,∵P(x1,y1)在椭圆上,∴,故为定值.(ⅱ)直线BP的斜率为,直线m的斜率为,则直线m的方程为,====,即.所以直线m过定点(﹣1,0).【点评】:熟练掌握椭圆的定义及其性质、斜率的计算公式及其直线的点斜式是解题的关键.善于利用已经证明过的结论是解题的技巧.20.(本题满分15分,第1小题满分9分,第2小题满分6分)设定义域为的奇函数在区间上是减函数.(1)求证:函数在区间上是单调减函数;(2)试构造一个满足上述题意且在内不是单调递减的函数.(不必证明)参考答案:解(1)任取,,则由
(2分)由在区间上是单调递减函数,有,
(3分)又由是奇函数,有,即.
(3分)所以,函数在区间上是单调递减函数.
(1分)(2)如或等
(6分)21.(本小题满分13分)某港口的水深y(m)是时间t(0≤t≤24,单位:h)的函数,下表是该港口某一天从0:00时至24:00时记录的时间t与水深y的关系:t(h)0:003:006:009:0012:0015:0018:0021:0024:00y(m)10.013.09.97.010.013.010.17.010.0经长时间的观察,水深y与t的关系可以用拟合。根据当天的数据,完成下面的问题:
(1)求出当天的拟合函数的表达式;
(2)如果某船的吃水深度(船底与水面的距离)为7m,船舶安全航行时船底与海底的距离不少于4.5m。那么该船在什么时间段能够进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间。(忽略离港所需时间)
(3)若某船吃水深度为8m,安全间隙(船底与海底的距离)为2.5.该船在3:00开始卸货,吃水深度以每小时0.5m的速度减少,那么该船在什么时间必须停止卸货,驶向较安全的水域?参考答案:
解:(1)根据数据,画出散点图,知A=3,h=10,T=12,,
(2)由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学阶段中如何通过技术手段提高课堂互动性
- 展厅光环境对客户心理的影响研究
- 承德市模拟数学试卷
- 学校食堂食品安全的健康教育内容设计
- 吉林省长春市第29中学2025届毕业升学考试模拟卷生物卷含解析
- 2024版货物买卖合同:高端电子产品交易
- 2025届江西省上饶县中考适应性考试生物试题含解析
- 二零二五年度成都上灶师父招聘与餐饮业人才引进与发展合同3篇
- 陕西省咸阳市兴平市重点中学2025届中考生物四模试卷含解析
- 家长参与学校活动的策略与技巧
- 《数学广角-优化》说课稿-2024-2025学年四年级上册数学人教版
- 《小学生良好书写习惯培养的研究》中期报告
- 北京课改版六年级英语下册全册知识点清单汇总
- 烂尾楼工程联建检测与鉴定
- 汽车技术服务与营销毕业论文备选题目
- Reaxys使用方法
- 跌落测试(中文版)ISTA2A2006
- 云南省教育科学规划课题开题报告 - 云南省教育科学研究院
- 蒸汽管道施工方案(20201118222709)
- 汉语教程第一册-上-测试
- 城市供水问题与对策研究毕业论文
评论
0/150
提交评论