版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年河北省枣强县枣强中学数学高三上期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等边△ABC内接于圆:x2+y2=1,且P是圆τ上一点,则的最大值是()A. B.1 C. D.22.等差数列中,已知,且,则数列的前项和中最小的是()A.或 B. C. D.3.复数的虚部为()A. B. C.2 D.4.某工厂只生产口罩、抽纸和棉签,如图是该工厂年至年各产量的百分比堆积图(例如:年该工厂口罩、抽纸、棉签产量分别占、、),根据该图,以下结论一定正确的是()A.年该工厂的棉签产量最少B.这三年中每年抽纸的产量相差不明显C.三年累计下来产量最多的是口罩D.口罩的产量逐年增加5.已知函数满足:当时,,且对任意,都有,则()A.0 B.1 C.-1 D.6.已知,则的取值范围是()A.[0,1] B. C.[1,2] D.[0,2]7.已知双曲线的中心在原点且一个焦点为,直线与其相交于,两点,若中点的横坐标为,则此双曲线的方程是A. B.C. D.8.设,,分别是中,,所对边的边长,则直线与的位置关系是()A.平行 B.重合C.垂直 D.相交但不垂直9.已知定义在上的可导函数满足,若是奇函数,则不等式的解集是()A. B. C. D.10.已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为()A. B.C. D.11.设等差数列的前项和为,若,则()A.23 B.25 C.28 D.2912.若的内角满足,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,则________.14.若向量满足,则实数的取值范围是____________.15.已知半径为的圆周上有一定点,在圆周上等可能地任意取一点与点连接,则所得弦长介于与之间的概率为__________.16.在中,角所对的边分别为,为的面积,若,,则的形状为__________,的大小为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,侧棱底面,,,,是棱的中点.(1)求证:平面;(2)若,点是线段上一点,且,求直线与平面所成角的正弦值.18.(12分)如图,设A是由个实数组成的n行n列的数表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的实数,且aij{1,-1}.记S(n,n)为所有这样的数表构成的集合.对于,记ri(A)为A的第i行各数之积,cj(A)为A的第j列各数之积.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)请写出一个AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?说明理由;(Ⅲ)给定正整数n,对于所有的AS(n,n),求l(A)的取值集合.19.(12分)在直角坐标系中,已知点,的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)设曲线与曲线相交于,两点,求的值.20.(12分)已知数列的各项都为正数,,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,其中表示不超过x的最大整数,如,,求数列的前2020项和.21.(12分)(某工厂生产零件A,工人甲生产一件零件A,是一等品、二等品、三等品的概率分别为,工人乙生产一件零件A,是一等品、二等品、三等品的概率分别为.己知生产一件一等品、二等品、三等品零件A给工厂带来的效益分别为10元、5元、2元.(1)试根据生产一件零件A给工厂带来的效益的期望值判断甲乙技术的好坏;(2)为鼓励工人提高技术,工厂进行技术大赛,最后甲乙两人进入了决赛.决赛规则是:每一轮比赛,甲乙各生产一件零件A,如果一方生产的零件A品级优干另一方生产的零件,则该方得分1分,另一方得分-1分,如果两人生产的零件A品级一样,则两方都不得分,当一方总分为4分时,比赛结束,该方获胜.Pi+4(i=4,3,2,…,4)表示甲总分为i时,最终甲获胜的概率.①写出P0,P8的值;②求决赛甲获胜的概率.22.(10分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
如图所示建立直角坐标系,设,则,计算得到答案.【题目详解】如图所示建立直角坐标系,则,,,设,则.当,即时等号成立.故选:.【题目点拨】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.2、C【解题分析】
设公差为,则由题意可得,解得,可得.令
,可得
当时,,当时,,由此可得数列前项和中最小的.【题目详解】解:等差数列中,已知,且,设公差为,
则,解得
,.
令
,可得,故当时,,当时,,
故数列前项和中最小的是.故选:C.【题目点拨】本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.3、D【解题分析】
根据复数的除法运算,化简出,即可得出虚部.【题目详解】解:=,故虚部为-2.故选:D.【题目点拨】本题考查复数的除法运算和复数的概念.4、C【解题分析】
根据该厂每年产量未知可判断A、B、D选项的正误,根据每年口罩在该厂的产量中所占的比重最大可判断C选项的正误.综合可得出结论.【题目详解】由于该工厂年至年的产量未知,所以,从年至年棉签产量、抽纸产量以及口罩产量的变化无法比较,故A、B、D选项错误;由堆积图可知,从年至年,该工厂生产的口罩占该工厂的总产量的比重是最大的,则三年累计下来产量最多的是口罩,C选项正确.故选:C.【题目点拨】本题考查堆积图的应用,考查数据处理能力,属于基础题.5、C【解题分析】
由题意可知,代入函数表达式即可得解.【题目详解】由可知函数是周期为4的函数,.故选:C.【题目点拨】本题考查了分段函数和函数周期的应用,属于基础题.6、D【解题分析】
设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解.【题目详解】设,则,,∴()2•2||22=4,所以可得:,配方可得,所以,又则[0,2].故选:D.【题目点拨】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.7、D【解题分析】
根据点差法得,再根据焦点坐标得,解方程组得,,即得结果.【题目详解】设双曲线的方程为,由题意可得,设,,则的中点为,由且,得,,即,联立,解得,,故所求双曲线的方程为.故选D.【题目点拨】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.8、C【解题分析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点:直线与直线的位置关系9、A【解题分析】
构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.【题目详解】构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,,所以,所以.由得,所以,故不等式的解集为.故选:A【题目点拨】本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.10、B【解题分析】
利用图形作出空间中两直线所成的角,然后利用余弦定理求解即可.【题目详解】如图,,设为的中点,为的中点,由图可知过且与平行的平面为平面,所以直线即为直线,由题易知,的补角,分别为,设三棱柱的棱长为2,在中,,;在中,,;在中,,,.故选:B【题目点拨】本题主要考查了空间中两直线所成角的计算,考查了学生的作图,用图能力,体现了学生直观想象的核心素养.11、D【解题分析】
由可求,再求公差,再求解即可.【题目详解】解:是等差数列,又,公差为,,故选:D【题目点拨】考查等差数列的有关性质、运算求解能力和推理论证能力,是基础题.12、A【解题分析】
由,得到,得出,再结合三角函数的基本关系式,即可求解.【题目详解】由题意,角满足,则,又由角A是三角形的内角,所以,所以,因为,所以.故选:A.【题目点拨】本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
项和转化可得,讨论是否满足,分段表示即得解【题目详解】当时,由已知,可得,∵,①故,②由①-②得,∴.显然当时不满足上式,∴故答案为:【题目点拨】本题考查了利用求,考查了学生综合分析,转化划归,数学运算,分类讨论的能力,属于中档题.14、【解题分析】
根据题意计算,解得答案.【题目详解】,故,解得.故答案为:.【题目点拨】本题考查了向量的数量积,意在考查学生的计算能力.15、【解题分析】在圆上其他位置任取一点B,设圆半径为R,其中满足条件AB弦长介于与之间的弧长为•2πR,则AB弦的长度大于等于半径长度的概率P==;故答案为:.16、等腰三角形【解题分析】∵∴根据正弦定理可得,即∴∴∴的形状为等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案为等腰三角形,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解题分析】
(1)的中点,连接,,证明四边形是平行四边形可得,故而平面;(2)以为原点建立空间坐标系,求出平面的法向量,计算与的夹角的余弦值得出答案.【题目详解】(1)证明:取的中点,连接,,,分别是,的中点,,,又,,,,四边形是平行四边形,,又平面,平面,平面.(2)解:,,又,故,以为原点,以,,为坐标轴建立空间直角坐标系,则,0,,,0,,,2,,,0,,,2,,是的中点,是的三等分点,,1,,,,,,,,,0,,,2,,设平面的法向量为,,,则,即,令可得,,,,,直线与平面所成角的正弦值为.【题目点拨】本题考查了线面平行的判定,空间向量与直线与平面所成角的计算,属于中档题.18、(Ⅰ)答案见解析;(Ⅱ)不存在,理由见解析;(Ⅲ)【解题分析】
(Ⅰ)可取第一行都为-1,其余的都取1,即满足题意;(Ⅱ)用反证法证明:假设存在,得出矛盾,从而证明结论;(Ⅲ)通过分析正确得出l(A)的表达式,以及从A0如何得到A1,A2……,以此类推可得到Ak.【题目详解】(Ⅰ)答案不唯一,如图所示数表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,证明如下:假如存在,使得.因为,,所以,,...,,,,...,这18个数中有9个1,9个-1.令.一方面,由于这18个数中有9个1,9个-1,从而①,另一方面,表示数表中所有元素之积(记这81个实数之积为m);也表示m,从而②,①,②相矛盾,从而不存在,使得.(Ⅲ)记这个实数之积为p.一方面,从“行”的角度看,有;另一方面,从“列”的角度看,有;从而有③,注意到,,下面考虑,,...,,,,...,中-1的个数,由③知,上述2n个实数中,-1的个数一定为偶数,该偶数记为,则1的个数为2n-2k,所以,对数表,显然.将数表中的由1变为-1,得到数表,显然,将数表中的由1变为-1,得到数表,显然,依此类推,将数表中的由1变为-1,得到数表,即数表满足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合为.【题目点拨】本题为数列的创新应用题,考查数学分析与思考能力及推理求解能力,解题关键是读懂题意,根据引入的概念与性质进行推理求解,属于较难题.19、(1);(2)【解题分析】
(1)消去参数方程中的参数,求得的普通方程,利用极坐标和直角坐标的转化公式,求得的直角坐标方程.(2)求得曲线的标准参数方程,代入的直角坐标方程,写出韦达定理,根据直线参数中参数的几何意义,求得的值.【题目详解】(1)由的参数方程(为参数),消去参数可得,由曲线的极坐标方程为,得,所以的直角坐方程为,即.(2)因为在曲线上,故可设曲线的参数方程为(为参数),代入化简可得.设,对应的参数分别为,,则,,所以.【题目点拨】本小题主要考查参数方程化为普通方程,考查极坐标方程化为直角坐标方程,考查利用利用和直线参数方程中参数的几何意义进行计算,属于中档题.20、(Ⅰ);(Ⅱ)4953【解题分析】
(Ⅰ)递推公式变形为,由数列是正项数列,得到,根据数列是等比数列求通项公式;(Ⅱ),根据新定义和对数的运算分类讨论数列的通项公式,并求前2020项和.【题目详解】(Ⅰ)∵,∴,∴又∵数列的各项都为正数,∴,即.∴数列是以2为首项,2为公比的等比数列,∴.(Ⅱ)∵,∴,.∴数列的前2020项的和为.【题目点拨】本题考查根据数列的递推公式求通项公式和数列的前项和,意在考查转化与化归的思想,计算能力,属于中档题型.21、(1)乙的技术更好,见解析(2)①,;②【解题分析】
(1)列出分布列,求出期望,比较大小即可;(2)①直接根据概率的意义可得P0,P8;②设每轮比赛甲得分为,求出每轮比赛甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差数列,根据可得答案.【题目详解】(1)记甲乙各生产一件零件给工厂带来的效益分别为元、元,随机变量,的分布列分别为10521052所以,,所以,即乙的技术更好
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年终工作总结个人报告(10篇)
- 中专自我鉴定合集15篇
- 标准设备购买合同
- 西安迈科商业中心连体超高层结构设计-龙辉元张晓宇王福安
- 师德师风个人学习心得范文
- 班级建设目标
- 2023六年级语文上册 第八单元 28 有的人-纪念鲁迅有感教学实录新人教版
- 简爱读后感10篇【100-1000字】
- 教师的辞职报告15篇
- 餐厅服务员辞职申请书集锦6篇
- 生产与运作管理第三版课后习题含答案版
- 高频考点之评价与文本互证考题专练-2024年高考语文二轮复习三点突破讲解专练
- 《高铁酸钾的制备》课件
- 上海财经大学《801经济学》历年考研真题及详解
- XX医院临床医疗质量考核通用记录表
- 城市交通枢纽运营故障应急预案
- 料场加工施工方案
- 【浅析人工智能在石油行业中的应用3400字(论文)】
- 专题06课内阅读(解析版)-2021-2022年(两年真题)全国三年级上学期语文期末试卷分类汇编
- 矫治器与矫治技术-常用活动矫治器(口腔正畸学课件)
- (全)外研版丨九年级下册英语各模块作文范文(名校版)
评论
0/150
提交评论