2022-2023学年四川省雅安市高二下学期期中数学(理)试题【含答案】_第1页
2022-2023学年四川省雅安市高二下学期期中数学(理)试题【含答案】_第2页
2022-2023学年四川省雅安市高二下学期期中数学(理)试题【含答案】_第3页
2022-2023学年四川省雅安市高二下学期期中数学(理)试题【含答案】_第4页
2022-2023学年四川省雅安市高二下学期期中数学(理)试题【含答案】_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年四川省雅安市高二下学期期中数学(理)试题一、单选题1.复数为虚数单位的模为(

)A.1 B.2 C. D.【答案】C【分析】应用复数除法化简复数,即可得模.【详解】,故模为.故选:C2.下列求导运算正确的是(

)A. B.C. D.【答案】D【分析】根据导数运算公式逐项求解即可.【详解】,故A错误;,故B错误;,故C错误;,故D正确.故选:D.3.对于命题,,若是假命题,是假命题,则下列判断正确的是()A.,都是真命题 B.,都是假命题C.是真命题,q是假命题 D.是假命题,是真命题【答案】D【分析】根据命题的真值表即可判断.【详解】因为是假命题,所以命题,中至少有一个为假命题,又因为是假命题,所以,都是假命题,所以为真命题,故选:D.4.曲线在点处的切线方程为(

)A. B.C. D.【答案】A【分析】求函数在点处的导数值,根据点斜式求切线方程..【详解】因为,所以,所以,所以曲线在点处的切线斜率为,所以曲线在点处的切线方程为,即,故选:A.5.在正四面体中,F是的中点,E是的中点,若,则(

)A. B.C. D.【答案】A【分析】利用空间向量的运算法则即可得,再由三角形法则即可求得.【详解】根据题意可得,;再由,可得.故选:A6.甲、乙、丙、丁、戊共5名同学参加劳动技术比赛,决出第一名到第五名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军,”对乙说:“你不是最差的.”从这两个回答分析,5人的名次排列可能有(

)不同的排列A.36 B.54 C.60 D.72【答案】B【分析】利用特殊元素特殊位置优先考虑,结合分步乘法计数原理即可求解.【详解】分三步完成:冠军有种可能,乙的名次有种可能,余下人有种可能,所以5人的名次排列有种不同情况.故选:B.7.命题“,”是真命题的充要条件是(

)A. B. C. D.【答案】B【分析】直接利用恒成立问题的建立不等式,进一步求出实数a的取值范围.【详解】命题“,”为真命题,则在上恒成立,∵,∴,则.故选∶B.8.直线l的方向向量为,且l过点,则点到直线l的距离为(

)A. B. C. D.【答案】C【分析】利用向量投影和勾股定理即可计算.【详解】∵,,∴,又,∴在方向上的投影,∴P到l距离.故选:C9.函数的图象可能是(

)A. B.C. D.【答案】C【分析】根据函数的奇偶性,结合函数值,以及函数的变化趋向,即可判断选项.【详解】函数的定义域为,满足,所以函数是奇函数,故排除B,设,,所以在上单调递增,,,所以当时,,故排除D;当时,,故排除A.故选:C10.三名男生和三名女生站成一排照相,男生甲与男生乙相邻,且三名女生中恰好有两名女生相邻,则不同的站法共有A.72种 B.108种 C.36种 D.144种【答案】D【分析】根据题意,利用捆绑法和插空法,再利用分布乘法原理,即可求出结果.【详解】解:先将男生甲与男生乙“捆绑”,有种方法,再与另一个男生排列,则有种方法,三名女生任选两名“捆绑”,有种方法,再将两组女生插空,插入男生3个空位中,则有种方法,利用分步乘法原理,共有种.故选:D.【点睛】本题考查乘法原理的运用和排列知识,还运用了捆绑法和插空法解决相邻和不相邻问题,考查学生分析解决问题的能力.11.设,,,则a,b,c的大小关系为(

)A. B.C. D.【答案】D【分析】构造函数,研究其单调性,进而可以比较a,b,c的大小.【详解】令,则,所以时,,单调递减,时,,单调递增,,,,因为,所以.故选:D.12.已知是偶函数的导函数,.若时,,则使得不等式成立的x的取值范围是(

)A. B.C. D.【答案】C【分析】设,求导得,进而可得时,单调递增,由于为偶函数,推出为奇函数,进而可得在上单调递增,由于,则,由于,则,推出,即可得出答案.【详解】设,,由题意得时,,单调递增,因为为偶函数,所以,所以,所以为奇函数,所以在上单调递增,因为,所以,因为,所以,所以,所以,故选:C.二、填空题13.方程的复数根是__________.【答案】【分析】利用复数单位i的性质,解方程即可求得答案.【详解】由题意得方程即,故,故的复数根是,故答案为:14.已知向量,且与互相垂直,则实数__________.【答案】/【分析】求出,根据向量模长公式列出方程,求出.再分与两种情况,根据向量垂直列出方程,求出实数k的值.【详解】,所以,解得.当时,,,因为与互相垂直,所以,解得.当时,,因为与互相垂直,所以,解得,综上:.故答案为:15.如图所示,用不同的五种颜色分别为A,,,,五部分着色,相邻部分不能用同一种颜色,但同一种颜色可以反复使用,也可不使用,符合这些要求的不同着色的方法共有____.(用数字填写答案)【答案】540【分析】利用分步计数原理并按AD同色和AD不同色分类讨论,即可求得符合这些要求的不同着色的方法数.【详解】按照的顺序依次着色:当AD同色时,不同着色的方法有;当AD不同色时,不同着色的方法有则符合这些要求的不同着色的方法共有(种)故答案为:54016.已知函数在点处的切线过点,则的最小值为__________.【答案】12【分析】根据导数的几何意义求得函数在点处的切线方程,可推出,将化为,结合基本不等式即可求得答案.【详解】由函数可得,则,故函数在点处的切线方程为,即,则由题意可得,故,当且仅当,即取等号,即的最小值为12,故答案为:12三、解答题17.已知复数.(1)若复数为纯虚数,求实数的值;(2)若复数在复平面内对应的点在第四象限,求实数的取值范围.【答案】(1)(2)【分析】(1)直接根据实部为零,虚部不为零列式计算即可;(2)直接根据实部大于零,虚部小于零列不等式计算即可;【详解】(1),且复数为纯虚数,,解得;(2)复数在复平面内对应的点在第四象限,,解得.18.已知函数.(1)求函数的单调区间;(2)求函数在上的最大值和最小值.【答案】(1)递增区间为,;递减区间为(2)最大值为59,最小值为-49【分析】(1)求定义域,求导,解不等式,得到单调区间;(2)求出极值和端点值,比较后确定最值.【详解】(1)的定义域为R,且,令得,令得,所以递增区间为,,递减区间;(2)x-3(-3,-1)-1(-1,1)1(1,3)3+0-0+-49单调递增极大值11单调递减极小值-1单调递增59所以函数在上的最大值为59,最小值为-49.19.设:实数满足,:实数满足.(1)若,且为真,求实数的取值范围;(2)若,且是的充分不必要条件,求实数的取值范围.【答案】(1)(2)【分析】(1)根据为真,则真且真,即可求实数的取值范围;(2)根据是的充分不必要条件,列出不等式即可求实数的取值范围.【详解】(1)由得,当时,,即为真时,实数的取值范围是,由,解得,即为真时,实数的取值范围是,若为真,则真且真,故实数的取值范围是.(2)由得,又,∴.若是的充分不必要条件,则,且.∴,且.∴是的充分不必要条件.设,,则.∴且等号不同时取到,解得.∴实数的取值范围是.20.如图,在正四棱柱中,,M是棱上任意一点.(1)求证:;(2)若M是棱的中点,求异面直线AM与BC所成角的余弦值.【答案】(1)证明过程见解析(2)【分析】(1)建立空间直角坐标系,利用空间向量证明线线垂直;(2)在第一问的基础上,利用空间向量求解异面直角的夹角余弦值.【详解】(1)证明:以A为原点,AB,AD,所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,因为,所以,,,,所以;(2)M是棱的中点,故,则,设异面直线AM与BC所成角的大小为,则,故异面直线AM与BC所成角的余弦值为.21.如图,在直三棱柱中,,点D是的中点,点E在上,平面.(1)求证:平面平面;(2)当三棱锥的体积最大时,求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【分析】(1)取中点,连接、,由三角形的中位线定理可得,进而由直三棱柱可得,所以平面,再由平面,得,再由线面垂直的性质可得平面,从而推出平面,再由面面垂直的性质即可证明;(2)由(1)知平面,当三棱锥的体积最大时,设出,结合立体几何的体积公式,和基本不等式可求出,建立空间直角坐标系,写出相关点的坐标,求出直线的方向向量与平面的法向量,利用向量的夹角公式,结合向量的夹角与线面角的关系,即可求解.【详解】(1)取中点,连接、,如图所示:,点是的中点,,又是的中点,,又在直三棱柱中,有,平面,平面,平面,且面,平面平面,,平面,且平面,,又,且、平面,平面,又,平面,平面,面平面.(2)由(1)知平面,则,设,则,,,,由基本不等式知,当且仅当时等号成立,即三棱锥的体积最大,此时,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系,如图所示:则有,,,,,,,,设平面的一个法向量为,则有,取,解得,设直线与平面所成的角为,,故直线与平面所成角的正弦值为.22.已知函数.(1)讨论的单调性;(2)若方程有两个不同的实数根,求的取值范围.【答案】(1)答案见解析(2)【分析】(1)对求导,分类讨论和时的正负,即可得出的单调性;(2)解法一:“方程有两个不同的实数根”等价于“函数有两个零点”.对求导,讨论的单调性和最值,即可得出答案;解法二:由方程得,转化为与的图象有两个交点,对求导,得出的单调性和最值即可得出答案.【详解】(1)由条件知,,当时,在上恒成立,所以在单调递增.当时,令,得,令,得,所以在上单调递减,在上单调递增.(2)解法一:由方程得,“方程有两个不同的实数根”等价于“函数有两个零点”.,.①当时,,在上是增函数,最多只有一个零点,不符合题意;②当时,由得,当时,,在上单调递增,当时,,在上单调递减.(ⅰ)若,则,最多只有一个零点;(ⅱ)若,因为,且,,所以在区间内有一个零点.令函数,则,.当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论