版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省晋中市灵石县第一职业高级中学2022年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.直线l经过A(2,1)、B(1,m2)(m∈R)两点,那么直线l的倾斜角的取值范围是()A.[0,π) B. C. D.参考答案:D【考点】直线的倾斜角.【分析】设直线AB的倾斜角为θ,0≤θ<π,根据斜率的计算公式,可得AB的斜率为K==1﹣m2,进而可得K的范围,由倾斜角与斜率的关系,可得tanθ≤1,进而由正切函数的图象分析可得答案.【解答】解:设直线AB的倾斜角为θ,0≤θ<π,根据斜率的计算公式,可得AB的斜率为K==1﹣m2,易得k≤1,由倾斜角与斜率的关系,可得tanθ≤1,由正切函数的图象,可得θ的范围是,故选D.2.已知,则曲线和有(
)A.相同的短轴
B.相同的焦点
C.相同的离心率
D.相同的长轴参考答案:B略3.运行下列程序,若输入的p,q的值分别为65,36,则输出的的值为A.47
B.57
C.61
D.67参考答案:B第一步:第二步:第三步:第四步:最后:输出。,故选B。
4.定义在R上的奇函数f(x)满足f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=3x﹣1,则f(9)=()A.﹣2 B.2 C. D.参考答案:D【考点】3L:函数奇偶性的性质.【分析】根据题意,由f(x﹣2)=f(x+2),分析可得f(x)=f(x+4),即可得函数f(x)的周期为4,则有f(9)=f(1),由函数的解析式以及奇偶性可得f(1)的值,即可得答案.【解答】解:根据题意,函数f(x)满足f(x﹣2)=f(x+2),即f(x)=f(x+4),则函数f(x)的周期为4,f(9)=f(1),又由函数f(x)为奇函数,则f(1)=﹣f(﹣1),又由当x∈[﹣2,0]时,f(x)=3x﹣1,则f(﹣1)=3﹣1﹣1=﹣1=﹣;则有f(9)=f(1)=﹣f(﹣1)=;故选:D.5.等差数列中的是函数的极值点,则A.
B.
C. D.参考答案:A6.执行图所示的程序框图,若输入的值为,则输出的的值为A.2
B.-2
C.
D.参考答案:B7.掷一枚均匀的硬币4次,出现正面的次数多于反面的次数的概率为 A.
B.
C.
D.参考答案:B8.椭圆=1过点(﹣2,),则其焦距为()A.2 B.2 C.4 D.4参考答案:D【考点】椭圆的简单性质.【分析】先由条件把椭圆经过的点的坐标代入椭圆的方程,即可求出待定系数m,从而得到椭圆的标准方程,再根据椭圆的a,b,c之间的关系即可求出焦距2c.【解答】解:由题意知,把点(﹣2,)代入椭圆的方程可求得b2=4,故椭圆的方程为
,∴a=4,b=2,c===2,则其焦距为4.故选D.9.抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是() A.4 B. C. D.8参考答案:C【考点】抛物线的简单性质. 【专题】计算题;压轴题. 【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案. 【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1, 经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2), AK⊥l,垂足为K(﹣1,2), ∴△AKF的面积是4 故选C. 【点评】本题主要考查抛物线的基本性质和直线和抛物线的综合问题.直线和圆锥曲线的综合题是高考的热点要重视. 10.函数的图象过点,那么函数的单调递增区间是(
)
A.
B.
C.
D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.如图所示的算法中,,,,其中是圆周率,是自然对数的底数,则输出的结果是
.参考答案:12.设函数则的值为________.参考答案:2【分析】根据分段函数性质,逐步计算可得.【详解】首先,,所以.故填2【点睛】本题考查分段函数的性质,属于基础题.13.曲线的切线中,斜率最小的切线方程为___________参考答案:14.如果椭圆上一点到焦点的距离等于6,则点到另一个焦点的距离为________________.
参考答案:14略15.已知整数对按如下规律排成:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4)(2,3),(3,2),(4,1),……,照此规律则第60个数对是_________。参考答案:(5,7)16.已知复数,,,它们所对应的点分别为、、,若,则的值是___________.参考答案:5略17.下图是容量为200的频率直方图,根据样本的频率分布直方图估计,样本数据落在内的频数为
.参考答案:64略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知a,b,c都是正数,且a,b,c成等比数列,求证:a2+b2+c2>(a﹣b+c)2.参考答案:【考点】不等式的证明;基本不等式;等比数列的性质.【分析】左边减去右边等于2(ab+bc﹣ac),用等比数列的定义以及基本不等式可得a+c>b,进而推出2(ab+bc﹣ac)>0,从而证得不等式成立.【解答】证明:∵a2+b2+c2﹣(a﹣b+c)2=2(ab+bc﹣ac).∵a,b,c都是正数,且a,b,c成等比数列,∴b2=ac≤,开方可得,故a+c≥2b>b.∴2(ab+bc﹣ac)=2(ab+bc﹣b2)=2b(a+c﹣b)>0,∴a2+b2+c2﹣(a﹣b+c)2>0,∴a2+b2+c2>(a﹣b+c)2.【点评】本题主要考查基本不等式的应用,等比数列的定义和性质,用比较法证明不等式,属于中档题.19.判断下列命题的真假,并写出这些命题的否定。(1)存在一个四边形,它的对角线互相垂直。参考答案:20.(12分)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点.(1)证明PB∥平面ACM;(2)证明AD⊥平面PAC;(3)求直线AM与平面ABCD所成角的正切值.参考答案:(1)证明:如图,连接BD,MO,在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点.又M为PD的中点,所以PB∥MO.因为PB?平面ACM,MO?平面ACM,所以PB∥平面ACM.DO=.从而AN=DO=.在Rt△ANM中,tan∠MAN===,即直线AM与平面ABCD所成角的正切值为.21.记函数的定义域为集合,函数的定义域为集合.(Ⅰ)求;(Ⅱ)若,且,求实数的取值范围.参考答案:(Ⅰ)依题意,得(Ⅱ)又
22.(本题满分14分)如图所示,甲船在A处,乙船在A处的南偏东45°方向,距A有9nmile并以20nmile/h的速度沿南偏西15°方向航行,若甲船以28nmile/h的速度航行,应沿什么方向,用多少h能尽快追上乙船?
参考答案:解:设用t小时,甲船能追上乙船,且在C处相遇.
在△ABC中,AC=28t,BC=20t,AB=9,∠ABC=1200,
根据余弦定理得,AC2=AB2+BC2-2AB·Bccos∠ABC
即(28t)2=(20t)2+(20t)2-2×9×20tcos
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 路边广告位转让合同
- 美国自费出国留学咨询服务合同年
- 居间合同佣金承诺书
- 事故车买卖合同协议
- 连车带人租赁合同
- 荒山承包合同范本
- 叉车租赁合同协议书范本大全
- 工地材料运输合同
- 借款合同答辩状范本范本
- 个人工作总结范文20篇
- 2024年广东省公务员录用考试《行测》真题及解析
- 高中英语必背3500单词表(完整版)
- 禁止送礼的协议书
- 2024年版《输变电工程标准工艺应用图册》
- 2024年高考数学试卷(北京)(空白卷)
- 2024从洞见到生意:阿里健康特色人群消费趋势报告-阿里健康x一财商学院
- 人教版2024年新教材七年级上册英语starter unit 1 -unit7重点短语句型清单
- 护理服务在产科中的应用课件
- 2024年小升初语文入学分班测试卷四(统编版)
- 流行文化对青少年价值观的影响研究
- 中国保险行业协会官方-2023年度商业健康保险经营数据分析报告-2024年3月
评论
0/150
提交评论