版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年河南省郑州市第四中学分校高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系表示的图象只可能是(
)参考答案:B略2.已知函数f(x)的定义域为(﹣1,1),则函数的定义域为()A.(0,2) B.(1,2) C.(2,3) D.(﹣1,1)参考答案:B【分析】由题意可得,由此求得的范围,即为所求.【详解】由题意,函数的定义域为,则对于函数,应有,解得,故定义域为.故选:B.【点睛】本题主要考查函数的定义域的定义,求函数的定义域,属于基础题.3.设入射光线沿直线射向直线发射后,反射光线所在直线方程是(
)A.
B.
C.
D.
参考答案:A4.不等式的解集为()A.[﹣1,2]
B.[﹣1,2)C.(﹣∞,﹣1]∪[2,+∞) D.(﹣∞,﹣1]∪(2,+∞)参考答案:B【考点】一元二次不等式的解法.【分析】先将此分式不等式等价转化为一元二次不等式组,特别注意分母不为零的条件,再解一元二次不等式即可【解答】解:不等式?(x+1)(x﹣2)≤0且x≠2?﹣1≤x≤2且x≠2?﹣1≤x<2故选B【点评】本题考察了简单分式不等式的解法,一般是转化为一元二次不等式来解,但要特别注意转化过程中的等价性5.设函数,其中,若是的三条边长,则下列结论中正确的是(
)①存在,使、、不能构成一个三角形的三条边②对一切,都有③若为钝角三角形,则存在x∈(1,2),使A.①②
B.①③
C.②③
D.①②③参考答案:D6.在△ABC中,BD=2CD,若,则A.
B.
C.
D.参考答案:C7.函数,当时函数取得最大值,则()A.
B.
C.
D.参考答案:A8.在程序设计中,要将两个数a=2011,b=2012交换,使得a=2012,b=2011,使用赋值语句正确的一组是(
)参考答案:B9.不等式表示的平面区域为()参考答案:A10.设等差数列{}的前n项和为,若,则的值是A.2
B.3
C.4
D.5参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.函数()的部分图象如图所示,设为坐标原点,点是图象的最高点,点是图象与轴的交点,则
.参考答案:812.已知定义在R上的函数f(x)满足:.请写出这样的函数的一个表达式:
______________________.参考答案:13.在正四棱锥P-ABCD中,PA=2,直线PA与平面ABCD所成角为60°,E为PC的中点,则异面直线PA与BE所成角的大小为___________.参考答案:45°【分析】先确定直线PA与平面ABCD所成的角,然后作两异面直线PA和BE所成的角,最后求解.【详解】∵四棱锥P-ABCD是正四棱锥,∴就是直线PA与平面ABCD所成的角,即=60°,∴是等边三角形,AC=PA=2,设BD与AC交于点O,连接OE,则OE是的中位线,即,且,∴是异面直线PA与BE所成的角,正四棱锥P-ABCD中易证平面PAC,∴,中,,∴是等腰直角三角形,∴=45°.∴异面直线PA与BE所成的角是45°.故答案为45°.【点睛】本题考查异面直线所成的角,考查直线与平面所成的角,考查正四棱锥的性质.要注意在求空间角时,必须作出其“平面角”并证明,然后再计算.14.(5分)函数y=tan(3x+)的最小正周期为
.参考答案:考点: 三角函数的周期性及其求法.专题: 计算题;三角函数的图像与性质.分析: 由三角函数的周期性及其求法直接求值.解答: 由正切函数的周期公式得:T=.故答案为:.点评: 本题主要考察了三角函数的周期性及其求法,属于基础题.15.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上四个命题中,正确命题的序号是
.参考答案:①③【考点】LM:异面直线及其所成的角;LN:异面直线的判定.【分析】先把正方体的平面展开图还原成原来的正方体,再根据所给结论进行逐一判定即可.【解答】解:把正方体的平面展开图还原成原来的正方体如图所示,则AB⊥EF,EF与MN为异面直线,AB∥CM,MN⊥CD,只有①③正确.故答案为①③【点评】本题主要考查了异面直线及其所成的角,直线与直线的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.16.(5分)已知f(x)是定义在R上的偶函数,且在[0,+∞)上为增函数,f(1)=0,则不等式f(log2x)>0的解集为
.参考答案:(0,)∪(2,+∞)考点: 奇偶性与单调性的综合.专题: 函数的性质及应用.分析: 根据函数的奇偶性和单调性之间的关系,将不等式进行转化,即可得到不等式的解集.解答: ∵偶函数f(x)在[0,+∞)上为增函数,f(1)=0,∴不等式f(log2x)>0等价为f(|log2x|)>f(1),即|log2x|>1,即log2x>1或log2x<﹣1,即x>2或0<x<,故不等式的解集为{x|x>2或0<x<},故答案为:(0,)∪(2,+∞)点评: 本题主要考查不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,综合考查函数性质的应用.17.设,则函数的最大值为.参考答案:【考点】三角函数的最值.【分析】变形可得2x∈(0,π),y=﹣,表示点(cos2x,sin2x)和(2,0)连线斜率的相反数,点(cos2x,sin2x)在单位圆的上半圆,数形结合可得.【解答】解:∵,∴2x∈(0,π),变形可得y==﹣,表示点(cos2x,sin2x)和(2,0)连线斜率的相反数,而点(cos2x,sin2x)在单位圆的上半圆,结合图象可得当直线倾斜角为150°(相切)时,函数取最大值﹣tan150°=,故答案为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知,
,(1)求的值。(2)当为何值时,与平行?平行时它们是同向还是反向?参考答案:解:(1),,
(2)
由与平行,则有:得:
,从而有与是反向的19.已知,且α是第二象限的角.(1)求的值;(2)求cos2α的值.参考答案:【考点】GT:二倍角的余弦;GQ:两角和与差的正弦函数.【分析】(1)由已知中,且α是第二象限的角,求出α的余弦值后,代入两角差的正弦公式,即可得到答案.(2)由已知中,根据二倍角的余弦公式,cos2α=1﹣2sin2α,即可得到答案.【解答】解:(1)∵,且α是第二象限的角∴cosα=﹣=∴=sinα?cos﹣cosα?sin=(2)cos2α=1﹣2sin2α=1﹣=20.已知函数有如下性质:如果常数,那么该函数在上是减函数,在
上是增函数.(1)如果函数在上是减函数,在上是增函数,求的值;(2)证明:函数(常数)在上是减函数;(3)设常数,求函数的最小值和最大值.参考答案:解.(1)由已知得=4,∴b=4.
(2)证明:设,则
,得
,即在上为减函数。(3)∵c∈(1,9),∴∈(1,3),于是,当x=时,函数f(x)=x+取得最小值2.而f(1)-f(3)=,所以:当1<c≤3时,函数f(x)的最大值是f(3)=3+;当3<c<9时,函数f(x)的最大值是f(1)=1+c.21.(本小题满分10分)已知等差数列{an}满足a2=2,a5=8.(1)求{an}的通项公式;(2)各项均为正数的等比数列{bn}中,b1=1,b2+b3=a4,求{bn}的前n项和Tn.参考答案:(1)设等差数列{an}的公差为d,则由已知得,∴a1=0,d=2.∴an=a1+(n-1)d=2n-2.(2)设等比数列{bn}的公比为q,则由已知得q+q2=a4,∵a4=6,∴q=2或q=-3.∵等比数列{bn}的各项均为正数,∴q=2.∴{bn}的前n项和.22.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3
(2)求不等式f(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于临时签订合同报告
- 国企劳动派遣合同
- 合同法案例精解
- 钟点工聘用合同范本
- 大班课件《谁是采蜜冠军》
- 2024正规的自然人借款合同样本
- 2024合同信息化管理系统【信息系统合同】
- 2024个人租房协议书合同租房协议书(详细版)
- 2024标准销售业务员合同范本
- 2024个体借款合同协议模板
- 2024年居间服务委托协议
- 2024年动迁房购买合同范本
- JJG 165-2024钟罩式气体流量标准装置检定规程
- 人工智能训练师(中级数据标注员)理论考试题库大全(含答案)
- 手机综合症小品台词
- 建筑项目安全风险分级管控清单(范例)
- 二手车复习题终极版本
- 毕业设计说明书螺旋精确称重给料机设计
- 十大危险作业
- 组织文化研究文献综述
- 停电施工专项施工方案(π接
评论
0/150
提交评论