2021年福建省莆田市第十八中学高二数学文月考试题含解析_第1页
2021年福建省莆田市第十八中学高二数学文月考试题含解析_第2页
2021年福建省莆田市第十八中学高二数学文月考试题含解析_第3页
2021年福建省莆田市第十八中学高二数学文月考试题含解析_第4页
2021年福建省莆田市第十八中学高二数学文月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年福建省莆田市第十八中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.等差数列{an}的前n项和Sn,若,则()A.8 B.10 C.12 D.14参考答案:C试题分析:假设公差为,依题意可得.所以.故选C.考点:等差数列的性质.2.某个命题与正整数有关,若当时该命题成立,那么可推得当时该命题也成立,现已知当时该命题不成立,那么可推得()A.当时,该命题不成立

B.当时,该命题成立C.当时,该命题成立

D.当时,该命题不成立参考答案:D略3.设函数的定义域为,且是奇函数,是偶函数,则下列结论中正确的是

)是偶函数

是奇函数是奇函数

是奇函数参考答案:C4.下列命题中真命题的个数为:(

)①命题“若,则x,y全为0”的逆命题;②命题“全等三角形是相似三角形”的否命题;③命题“若m>0,则有实根”的逆否命题;④命题“在中,、、分别是角A、B、C所对的边长,若,则”的逆否命题。A.1 B.2 C.3 D.4参考答案:C略5.已知全集U=R,集合,,则等于(

)A.(0,2) B.(0,3) C. D.(0,2]参考答案:D【分析】解不等式得集合A,进而可得,求解函数定义域可得集合B,利用交集求解即可.【详解】因为集合,,所以,故选D.【点睛】本题主要考查了集合的补集及交集的运算,属于基础题.6.若方程表示焦点在y轴上的椭圆,那么实数m的取值范围是(

)A.m>0 B.0<m<1 C.﹣2<m<1 D.m>1且m≠参考答案:B【考点】椭圆的简单性质;椭圆的标准方程.【专题】计算题.【分析】先根据椭圆的标准方程,进而根据焦点在y轴推断出2﹣m2>m>0,从而求得m的范围.【解答】解:由题意,∴2﹣m2>m>0,解得:0<m<1,∴实数m的取值范围是0<m<1.故选B.【点评】本题主要考查了椭圆的标准方程、椭圆的简单性质.解题时注意看焦点在x轴还是在y轴.7.函数在区间[0,m]上有最大值3,最小值2,则m的取值范围是

A.

B.[1,2]

C.

D.[0,2]参考答案:B8.定义在R上的偶函数f(x),当,都有,且,则不等式的解集是(

)A.(-1,1) B.(-∞,-1)∪(1,+∞)C.(-∞,-1)∪(0,1) D.(-1,0)∪(1,+∞)参考答案:C【分析】根据题意,可得函数在上为减函数,在上为增函数,且,再由,分类讨论,即可求解.【详解】由题意,对于任意,都有,可得函数在上为递减函数,又由函数是R上的偶函数,所以函数在上为递增函数,且,由可得:当时,,即,可得,当时,,即,可得,综上可得不等式的解集为,故选C.【点睛】本题主要考查了函数的奇偶性和单调性的判断和应用,其中解答中根据函数的奇偶性和单调性,合理分类讨论是解答的关键,着重考查了分析问题和解答问题能力,属于中档试题.9.设函数是奇函数的导函数,当时,,则使得成立的x的取值范围是()A.(-2,0)∪(0,2) B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(2,+∞) D.(-∞,-2)∪(0,2)参考答案:D【分析】构造函数,可得在上为减函数,可得在区间和上,都有,结合函数的奇偶性可得在区间和上,都有,原不等式等价于或,从而可得的值范围.【详解】根据题意,设,其导数,又由当时,,则有,即函数在上为减函数,又由,则在区间上,,又由,则,在区间上,,又由,则,则在和上,,又由为奇函数,则在区间和上,都有,或,解可得或,则的取值范围是,故选D.【点睛】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.10.已知复数z=,则z的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:A【考点】复数代数形式的乘除运算.【专题】计算题;对应思想;数系的扩充和复数.【分析】利用虚数单位i得性质及复数代数形式的乘除运算化简求得z,进一步求出得答案.【解答】解:∵z====,∴,∴z的共轭复数在复平面内对应的点的坐标为(),位于第一象限.故选:A.【点评】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.二、填空题:本大题共7小题,每小题4分,共28分11.若,不等式恒成立,则实数的取值范围是_______参考答案:解析:恒成立

∴设

∴∴

∴∴12.已知点P是椭圆Г:=1(a>b>0)上的一点,F1、F2为椭圆的左、右焦点,若∠F1PF2=60°,且△PF1F2的面积为a2,则椭圆的离心率是.参考答案:【考点】椭圆的简单性质.【分析】由∠F1PF2=60°,△PF1F2的面积为a2,可得|PF1|?|PF2|.再根据椭圆的定义可得|PF1|+|PF2|=2a,利用余弦定理得到a,c的关系,即可求出椭圆的离心率.【解答】解:由∠F1PF2=60°,△PF1F2的面积为a2,可得|PF1|?|PF2|?sin∠F1PF2=|PF1|?|PF2|=a2,∴|PF1|?|PF2|=a2.再根据椭圆的定义可得|PF1|+|PF2|=2a.再利用余弦定理可得4c2=|PF1|2+|PF2|2﹣2|PF1||PF2|?cos60°=(|PF1|+|PF2|)2﹣3PF1?PF2=4a2﹣3a2,求得a=2c,∴e==.故答案为:.13.已知双曲线﹣=1(a>0)的渐近线方程是y=±x,则其准线方程为

.参考答案:x=±根据题意,由双曲线的方程可得其渐近线方程,由题意分析可得a的值,由双曲线的几何性质可得c的值,进而将a、c的值代入双曲线的准线方程计算可得答案.解:根据题意,双曲线的方程为﹣=1,其渐近线方程为y=±x,又由该双曲线﹣=1的渐近线方程是y=±x,则有=,解可得a=3,其中c==5,则其准线方程为x=±,故答案为:x=±.14.执行如右图所示的程序框图,若输入的值为6,则输出的值为_____________.参考答案:15略15.直线与曲线相切,则k的值为___________.参考答案:16.如果两个球的体积之比为8:27,那么两个球的表面积之比为

.参考答案:4:9【考点】球的体积和表面积.【专题】计算题.【分析】据体积比等于相似比的立方,求出两个球的半径的比,表面积之比等于相似比的平方,即可求出结论.【解答】解:两个球的体积之比为8:27,根据体积比等于相似比的立方,表面积之比等于相似比的平方,可知两球的半径比为2:3,从而这两个球的表面积之比为4:9.故答案为:4:9【点评】本题是基础题,考查相似比的知识,考查计算能力,常考题.17.若,则__________.参考答案:-32【分析】通过对原式x赋值1,即可求得答案.【详解】令可得,故答案为-32.【点睛】本题主要考查二项式定理中赋值法的理解,难度不大.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在中,角的对边分别为,且满足.

(Ⅰ)求角;

(Ⅱ)求的面积.

参考答案:解:(Ⅰ)

……………2分即

……………4分

.……………6分(Ⅱ)由余弦定理,得:即

…………8分即,解得或

……………10分∴由或……………12分略19.(10分)已知圆M过点A(0,),B(1,0),C(﹣3,0).(Ⅰ)求圆M的方程;(Ⅱ)过点(0,2)的直线l与圆M相交于D、E两点,且|DE|=2,求直线l的方程.参考答案:【考点】直线与圆的位置关系.【分析】(Ⅰ)利用待定系数法,求圆M的方程;(Ⅱ)分类讨论,利用|DE|=2,求直线l的方程.【解答】解:(Ⅰ)设圆M:x2+y2+Dx+Ey+F=0,则,∴D=2,E=0,F=﹣3…故圆M:x2+y2+2x﹣3=0,即(x+1)2+y2=4…(Ⅱ)由(Ⅰ)得,M(﹣1,0).设N为DE中点,则MN⊥l,|DN|=|EN|=…此时|MN|==1.…(6分)当l的斜率不存在时,c=0,此时|MN|=1,符合题意

…(7分)当l的斜率存在时,设l:y=kx+2,由题意=1,…(8分)解得:k=,…(9分)故直线l的方程为3x﹣4y+8=0…(10分)综上直线l的方程为x=0或3x﹣4y+8=0【点评】本题考查圆的方程,考查直线与圆的位置关系,考查分类讨论的数学思想,属于中档题.20.已知某公司生产一种仪器元件,年固定成本为20万元,每生产1万件仪器元件需另外投入8.1万元,设该公司一年内共生产此种仪器元件x万件并全部销售完,每万件的销售收入为f(x)万元,且f(x)=(Ⅰ)写出年利润y(万元)关于年产品x(万件)的函数解析式;(Ⅱ)当年产量为多少万件时,该公司生产此种仪器元件所获年利润最大?(注:年利润=年销售收入﹣年总成本)参考答案:【考点】6K:导数在最大值、最小值问题中的应用;5B:分段函数的应用.【分析】(Ⅰ)通过当0<x≤10时,当x>10时,写出年利润y(万元)关于年产品x(万件)的函数解析式;(Ⅱ)①当0<x≤10时,通过求解函数的导数求解函数的最值;②当x>10时,利用基本不等式求解函数的最值.即可得到结果.【解答】解:(Ⅰ)当0<x≤10时,…当x>10时,…所以…6分(Ⅱ)①当0<x≤10时,由,得x=9(负值舍去).当x∈(0,9)时,y'>0;当x∈(9,10)时,y'<0;∴当x=9时,y取得极大值也是最大值,…9分②当x>10时,当且仅当,即时,ymax=124.…11分

综合①、②知x=9时,y取最大值,所以当年产量为9万件时,该公司生产此种仪器获利最大.…12分21.如图,设椭圆(a>1).(Ⅰ)求直线y=kx+1被椭圆截得的线段长(用a、k表示);(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.参考答案:(Ⅰ);(Ⅱ).试题分析:(Ⅰ)先联立和,可得,,再利用弦长公式可得直线被椭圆截得的线段长;(Ⅱ)先假设圆与椭圆的公共点有个,再利用对称性及已知条件可得任意以点为圆心的圆与椭圆至多有个公共点时,的取值范围,进而可得椭圆离心率的取值范围.试题解析:(Ⅰ)设直线被椭圆截得的线段为,由得,故,.因此.(Ⅱ)假设圆与椭圆的公共点有个,由对称性可设轴左侧的椭圆上有两个不同的点,,满足.记直线,的斜率分别为,,且,,.由(Ⅰ)知,,,故,所以.由于,,得,因此,①因为①式关于,的方程有解的充要条件是,所以.因此,任意以点为圆心的圆与椭圆至多有个公共点的充要条件为,由得,所求离心率的取值范围为.【考点】弦长,圆与椭圆的位置关系,椭圆的离心率.【思路点睛】(Ⅰ)先联立和,可得交点的横坐标,再利用弦长公式可得直线被椭圆截得的线段长;(Ⅱ)利用对称性及已知条件任意以点为圆心的圆与椭圆至多有3个公共点,求得的取值范围,进而可得椭圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论