高中数学-圆的标准方程教学设计学情分析教材分析课后反思_第1页
高中数学-圆的标准方程教学设计学情分析教材分析课后反思_第2页
高中数学-圆的标准方程教学设计学情分析教材分析课后反思_第3页
高中数学-圆的标准方程教学设计学情分析教材分析课后反思_第4页
高中数学-圆的标准方程教学设计学情分析教材分析课后反思_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《圆的标准方程》教学设计教材分析教学内容普通高中课程标准实验教科书《数学》必修2第二章平面解析几何初步中2﹒2节圆与方程。本节主要研究圆的方程,直线与圆的位置关系,圆与圆的位置关系,以及他们在生活中的简单运用。教材的地位与作用圆是最简单的曲线之一,这节教材安排在学习了直线之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论为后继学习作好准备。同时有关圆的问题,特别是直线与圆的位置问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法。应此教学中应加强练习,使学生确实掌握这单元的知识和方法。初中教材中对圆的内容降低最低要求。本课是单元的第一课,和直线方程一样,教学中先设计一个问题情景,让学生讨论,并引导学生观察圆上点在运动时,不变的是什么,抓住圆的本质,突破难点。三维目标(1)知识与技能A.掌握圆的标准方程,并根据方程写出圆的坐标和圆的半径。B.会选择适当的坐标系来解决与圆有关的实际问题。(2)过程与方法A.实际问题引入,师生共同探讨。B.探究曲线方程的基本方法。(3)情感态度与价值观培养用坐标法研究几何问题的兴趣。4.教学重点圆的标准方程及运用5.教学难点求圆的标准方程的条件的确定。二.教法分析高一学生,在老师的引导下,已经具备一定探究与研究问题的能力。所以在设计问题时应考虑周全和灵活性,采用启发式探索式教学,师生共同探讨,共同研究,让学生积极思考,主动学习。在教学过程中采用讨论法,向学生提供具备启发式和思考性的问题。因此,要求学生在课上讨论,提高学生的探索,推理,想象,分析和总结归纳等方面的能力。三.学法分析从高考发展的趋势看,高考越来重视学生的分析问题解决问题的能力。因此,要求学生在学习中遇到问题时,不要急于求成,而要根据问题提供的信息回忆所学知识,采用转化思想,数形结合的思想,选择最佳方案加以解决“瞎撞,乱撞”的不良思想。四.教学过程项目具体内容教师活动学生活动教学意图复习复习上节课内容,思考一下几个问题什么是直线方程?确定直线方程的要素有哪些?直线方程有哪几种表达式,都是什么样的?教师提问。复习直线的方程形式,帮助同学去联想圆的方程引入新课上节课我们已经学过直线方程的概念,直线斜率及直线方程的常见表达式,我们知道了关于x,y的二元一次方程都表示一条直线,那么曲线方程会有怎样的表达式呢?这节课让我们一起来学习最常见的曲线----圆的方程的第一节圆的标准方程。一、新课引入同学们在初中的时候就已经初步了解了圆的有关知识,那么哪一位同学来回答圆的概念?是的,平面内到一定点距离等于定长的点的轨迹称为圆。定点是圆心,定长是圆的半径。圆心和半径分别确定了圆的位置和大小.现在我们求以C(a,b)为圆心,r为半径的圆的方程首先我们建立一个直角坐标系,设点M(x,y)是圆上任意一点,那点M在圆上的条件是|MC|=r,那么由我们已经学过的两点间的距离公式,所说条件可以转化为方程表示:将上式两边平方得:(x-a)2+(y-b)2=r2.(1)显然,圆上任意一点M的坐标(x,y)适合方程(1);如果平面上一点M的坐标(x,y)适合方程(1),可得|MC|=r,则点M在圆上。所以方程(1)是以C(a,b)为圆心、r为半径的圆的方程.我们把它叫做圆的标准方程.那同学们观察一下圆的标准方程形式有什么特点?思考一下当圆心在原点时,x轴上,y轴上时,圆的方程是什么?这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1.点(a,b)、r分别表示圆心的坐标和圆的半径.且当圆心在原点即C(0,0)时,方程为x2+y2=r2 圆心在轴上时: 圆心在轴上时: 圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r三个量确定了且r>0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a、b、r,可以根据条件,利用待定系数法来解决.口头练习1说出下列圆的圆心和半径:(1)(x-3)2+(y-2)2=5;(2)x2+(y-5)2=8;(3)(x+2)2+y2=m2(m≠0)总结:已知圆的标准方程,要能够熟练地求出它的圆心和半径.2、说出下列圆的方程:(1)圆心在原点,半径为3.(2)圆心在点C(3,-4),半径为7.(3)圆心在点C(3,,0).且与y轴相切。总结:根据圆心坐标、半径长熟练地写出圆的标准方程.容易看出,如果点M。(x。,y。)在圆外,则点到圆心的距离大于圆的半径r,即如果点M。(x。,y。)在圆内,则点到圆心的距离小于圆的半径r,即当然我们刚才做的练习题都是比较简单的,那当遇到比较复杂的条件时,我们怎么来确定圆的标准方程呢?我们来做下面的一道题。例1写出圆心为A(2,-3)半径长等于5的圆的并判断点M(5,-7),N(-,-1)是否在这个圆上例2根据下列条件,求圆的方程:(1)圆心在点C(-2,1),并过点A(2,-2)的圆。(2)圆心在点C(1,3),并与直线相切的圆的方程(3)⊿ABC的三个顶点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程小结本题:求圆的方程的方法定义法:直接求出圆心坐标和半径待定系数法:步骤是设圆的标准方程为:由条件列方程(组)解之得的值写出圆的标准方程课堂练习与提高随堂巩固:

1、已知两点P1(4,9)P2(6,3),求以线段P1P2为直径的圆的方程,并判断点M(6,9)在圆上、在圆内、还是在圆外?2、已知ΔAOB的顶点坐标分别是A(4,0),B(0,3),O(0,0),求ΔAOB外接圆的方程。

教师在黑板上引导启发同学们一起建立圆的标准方程,加深学生学习印象。提醒学生注意圆心在不同位置时圆的标准方程的不同形式。教师注意提醒同学语言精练准确。教师亲自讲解例题的解题过程,看同学反应情况给予适当提醒、启发。教师注意多种方法解题。教师应该注意提醒学生熟练掌握做文字叙述题。题目较为困难,教师在课堂上讲解时对同学启示。教师提问。同学独立思考,给出答案。学生独立总结。学生独立思考,自觉发言。学生独立思考,自觉发言。学生自己练习做题步骤,然后独立思考。同学在课堂练习,一名同学在黑板演示小组讨论,课堂练习,找一名同学叙述思路确定圆的标准方程的必要条件。确定点与圆的位置关系的条件。教师书写板书,规范答题过程通过简单的例题的学习,熟悉圆的标准方程的基本建立方法。教师书写板书,规范答题过程本课小结1.圆的方程的推导步骤。2.圆的方程的特点:点(a,b)、r分别表示圆心坐标和圆的半径。3.由不同的已知条件求解圆的标准方程。4.求圆的方程的两种方法:(1)待定系数法;(2)定义法。5.数型结合的数学思想同学总结,巩固加深印象。作业P1242.3.4.教学后记板书设计2.3.1圆的标准方程建立圆的标准方程圆的方程的推导(x-a)2+(y-b)2=r2圆的标准方程的特点:圆心(a,b)定位,r定型3、点与圆的位置关系圆的标准方程的应用例1例2例3复习引入(擦掉)学生练习五.教学后记教学不仅应向学生传授知识,而更重要的在于让学生参与获得知识的活动。教师应使学生在解决问题的过程中积极思考,使其在动手、动口,动脑的过程中懂得如何学习数学,体会数学知识的来龙去脉,从而培养其主动获取数学知识的能力。《圆的标准方程》学情分析圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强。从高考发展的趋势看,高考越来重视学生的分析问题解决问题的能力。因此,要求学生在学习中遇到问题时,不要急于求成,而要根据问题提供的信息回忆所学知识,采用转化思想,数形结合的思想,选择最佳方案加以解决“瞎撞,乱撞”的不良思想。《圆的标准方程》效果分析1、有明确的教学目标,能突出重点、化解难点。

2、善于运用现代化教学手段,根据具体内容,选择恰当的教学方法。3、关注学生,及时鼓励,充分发挥学生主体作用,调动学生的学习积极性。

4、切实重视基础知识、基本技能和基本方法,渗透数学思想方法,提高综合运用能力。

在实际教学中应因材施教,用不一样的标准衡量学生,尽量做到让不同的学生得到不同的发展。

《圆的标准方程》教材分析教材分析教学内容《圆的标准方程》选自普通高中实验教科书新课程标准数学必修2第四章第一节第一课时。圆是解析几何中一类重要的曲线,而圆的标准方程的学习是在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质这一基础上进行展开的,在学习中充分体现了数形结合的思想,以及用代数方法解决几何问题的思想,是进一步学习圆锥曲线的基础。教材的地位与作用圆是最简单的曲线之一,这节教材安排在学习了直线之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论为后继学习作好准备。同时有关圆的问题,特别是直线与圆的位置问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法。应此教学中应加强练习,使学生确实掌握这单元的知识和方法。初中教材中对圆的内容降低最低要求。本课是单元的第一课,和直线方程一样,教学中先设计一个问题情景,让学生讨论,并引导学生观察圆上点在运动时,不变的是什么,抓住圆的本质,突破难点。三维目标(1)知识与技能A.掌握圆的标准方程,并根据方程写出圆的坐标和圆的半径。B.会选择适当的坐标系来解决与圆有关的实际问题。(2)过程与方法A.实际问题引入,师生共同探讨。B.探究曲线方程的基本方法。(3)情感态度与价值观培养用坐标法研究几何问题的兴趣。4.教学重点圆的标准方程及运用5.教学难点求圆的标准方程的条件的确定。《圆的标准方程》观评记录作为课堂的旁观者,这节课我关注的焦点主要体现在三个方面。(一)突出重点

抓住关键

突破难点求圆的标准方程既是本节课的教学重点也是难点,为此王老师布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此王老师首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时王老师借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.我们通常理解的有效性就是如何在最短的时间内,掌握最多的知识、技能。我认为这种认识有点偏狭,课堂教学有效性应该体现在两个方面,其一,在规定的时间内,完成预定的知识技能的学习,其二,尽可能促进人的综合素质发展。在新课改背景下,教师在上展示课的时候,更喜欢凸显后者,这本身没有错,教育说到底应该是育人的,是促进人发展的,但是人的发展不是无本之木、无源之水,没有知识和技能为载体,人的发展就是镜花水月。因此强调课堂教学的有效性,二者都不能偏废,今天这位老师在这个问题上的平衡是值得肯定的,他一节课紧抓教学的主要任务,没有刻意的灌输做人的大道理,只在结尾的时候水到渠成的引出,“我们要低下头思考,抬起头走路”,有机的实现了知识获取和人的发展的结合。(二)学生主体

教师主导

探究主线本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、王老师的指导下,由学生探究完成的.另外,王老师重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在王老师的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。我理解的活动是让学生的思维活动起来,哪怕教师就是用讲授法进行教学,但是学生的思维一直处于活跃状态,我们就认为课堂教学是活动的。从这种理解来看,我认为这位老师的教学是比较务实的,他没有设计过多花哨的东西,而是力图通过提问、提示、追问,引导学生深入思考问题,这一节课师生问答大约用了14分钟时间。略显不足的是问题的开放性不够,教师存在过度引导的问题。(三)培养思维

提升能力

激励创新

为了培养学生的理性思维,王老师分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,王老师利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。评课的目的不是批评、不是定性,而是帮助教师发展。我们常说,教学有法、但无定法、贵在得法,每一个老师都有最适合自己的教学风格,我在听课的过程中就意图通过分析教师的教学行为以及教学表征来发现这位教师的教学特点。《圆的标准方程》测评练习1.已知一圆的标准方程为x2+(y+1)2=8,则此圆的圆心与半径分别为()A.(1,0),4B.(-1,0),2eq\r(2)C.(0,1),4D.(0,-1),2eq\r(2)2.已知点A(-4,-5),B(6,-1),则以线段AB为直径的圆的方程是()A.(x+1)2+(y-3)2=29B.(x-1)2+(y+3)2=29C.(x+1)2+(y-3)2=116D.(x-1)2+(y+3)2=1163.已知圆心在点P(-2,3),并且与y轴相切,则该圆的方程是()A.(x-2)2+(y+3)2=4B.(x+2)2+(y-3)2=4C.(x-2)2+(y+3)2=9D.(x+2)2+(y-3)2=94.自点A(-1,4)作圆(x-2)2+(y-3)2=1的切线,切点为B,则AB的长为()A.eq\r(5)B.3C.eq\r(10)D.55.已知点P(a,a+1)在圆x2+y2=25的内部,那么实数a的取值范围是()A.(-4,3)B.(-5,4)C.(-5,5)D.(-6,4)6.已知圆O的方程为(x-3)2+(y-4)2=25,则点M(2,3)到圆上的点的距离的最大值为________.7.若圆C与圆M:(x+2)2+(y-1)2=1关于原点对称,则圆C的标准方程是________.8.求圆心在x轴上,且过A(1,4),B(2,-3)两点的圆的方程.《圆的标准方程》教学反思圆是我们在学习了曲线方程后初次运用所学知识讨论已知曲线的方程,在初中学生已经学习过圆的几何性质,并且前面讨论了直线与方程,因此该部分的重点是运用解析几何来体现圆的性质。在整体的设计上,我通过适当的创设情境,调动学生的学习兴趣。然后以问题做链,环环相扣,运用前段时间学习的求曲线的方法引导学生探索方程,使学生的探究活动贯穿始终.从圆的标准方程的推导到标准方程的求解都是在问题的指引下,通过我的适度引导、侧面帮助、不断肯定,由学生探究完成并走向成功。在这节教学中,我着重以曲线与方程思想为主体,用解析几何诠释圆的几何性质。本意是想让学生把初中所熟知的知识用新的数学语言表达,但是这里情况并不让我满意。主要体现在两个方面:第一、很多学生对之前讨论的圆的几何性质比较生疏,课前准备工作没做好,导致课堂反应速度较慢,影响课程进度。第二、由于第一次正式研究曲线方程的应用,部分同学有无从下手的感觉,不能准确找到问题的切入点,反映了对基础知识的理解还不够透彻。如果当时我给出更多的提示,充分重视数形结合思想,效果可能会更好。在教学细节上,还有以下几点值得关注:1、从教材位置上看,本节内容安排在曲线方程概念和求曲线方程之后,三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备。同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法。2、在解决有关圆的问题的过程中多次用到配方法、待定系数法、数形结合等思想方法,还经常用到一元二次方程的理论、平面几何知识等,教师在教学中要注意多复习、多运用,多总结,培养学生运算能力和简化运算过程的意识。3、有关圆的内容非常丰富,有很多有价值的问题,建议适当选择一些内容供学生研

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论