2024学年广东省惠州市华罗庚中学数学高二上期末学业水平测试模拟试题含解析_第1页
2024学年广东省惠州市华罗庚中学数学高二上期末学业水平测试模拟试题含解析_第2页
2024学年广东省惠州市华罗庚中学数学高二上期末学业水平测试模拟试题含解析_第3页
2024学年广东省惠州市华罗庚中学数学高二上期末学业水平测试模拟试题含解析_第4页
2024学年广东省惠州市华罗庚中学数学高二上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024学年广东省惠州市华罗庚中学数学高二上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列的通项公式是()A. B.C. D.2.已知抛物线的焦点为,为坐标原点,点在抛物线上,且,点是抛物线的准线上的一动点,则的最小值为().A. B.C. D.3.已知等比数列的公比为q,且,则“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.直线的倾斜角为()A.0 B.C. D.5.圆与圆的交点为A,B,则线段AB的垂直平分线的方程是A. B.C. D.6.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B.C. D.7.等比数列的前项和为,前项积为,,当最小时,的值为()A.3 B.4C.5 D.68.已知两定点和,动点在直线上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的短轴的最小值为()A. B.C. D.9.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A. B.C. D.10.设等差数列的前n项和为,,公差为d,,,则下列结论不正确的是()A. B.当时,取得最大值C. D.使得成立的最大自然数n是1511.数列2,,9,,的一个通项公式可以是()A. B.C. D.12.如图,在直三棱柱中,,,E是的中点,则直线BC与平面所成角的正弦值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某公司青年、中年、老年员工的人数之比为10∶8∶7,从中抽取100名作为样本,若每人被抽中的概率是0.2,则该公司青年员工的人数为__________14.如图,在平行六面体中,底面是边长为1的正方形,的长度为2,且,则的长度为________15.(建三江)函数在处取得极小值,则=___16.已知数列中,,,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的上顶点在直线上,点在椭圆上.(1)求椭圆C的方程;(2)点P,Q在椭圆C上,且,,点G为垂足,是否存在定圆恒经过A,G两点,若存在,求出圆的方程;若不存在,请说明理由.18.(12分)如图,在四棱锥中,底面ABCD为直角梯形,,平面ABCD,,.(1)求点B到平面PCD的距离;(2)求二面角的平面角的余弦值.19.(12分)已知数列中,,().(1)求证:是等比数列,并求的通项公式;(2)数列满足,求数列的前项和为.20.(12分)已知数列的首项,,,.(1)证明:为等比数列;(2)求数列的前项和21.(12分)已知(1)若函数在上有极值,求实数a的取值范围;(2)已知方程有两个不等实根,证明:(注:是自然对数的底数)22.(10分)已知数列的各项均为正数,,为自然对数的底数(1)求函数的单调区间,并比较与的大小;(2)计算,,,由此推测计算的公式,并给出证明;

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】根据数列前几项,归纳猜想出数列的通项公式.【题目详解】依题意,数列的前几项为:;;;……则其通项公式.故选C.【题目点拨】本小题主要考查归纳推理,考查数列通项公式的猜想,属于基础题.2、A【解题分析】求出点坐标,做出关于准线的对称点,利用连点之间相对最短得出为的最小值【题目详解】解:抛物线的准线方程为,,到准线的距离为2,故点纵坐标为1,把代入抛物线方程可得不妨设在第一象限,则,点关于准线的对称点为,连接,则,于是故的最小值为故选:A【题目点拨】本题考查了抛物线的简单几何性质,属于基础题3、B【解题分析】利用充分条件和必要条件的定义结合等比数列的性质分析判断【题目详解】当时,则,则数列为递减数列,当是递增数列时,,因为,所以,则可得,所以“”是“是递增数列”的必要不充分条件,故选:B4、D【解题分析】根据斜率与倾斜角的关系求解即可.【题目详解】由题的斜率,故倾斜角的正切值为,又,故.故选:D.5、A【解题分析】圆的圆心为,圆的圆心为,两圆的相交弦的垂直平分线即为直线,其方程为,即;故选A.【题目点拨】本题考查圆的一般方程、两圆的相交弦问题;处理直线和圆、圆和圆的位置关系时,往往结合平面几何知识(如本题中,求两圆的相交弦的垂直平分线的方程即为经过两圆的圆心的直线方程)可减小运算量.6、D【解题分析】由题意得当时,,根据题意作出函数的部分图象,再结合图象即可求出答案【题目详解】解:当时,,又,∴当时,,∴在上单调递增,在上单调递减,且;又,则函数图象每往右平移两个单位,纵坐标变为原来的倍,作出其大致图象得,当时,由得,或,由图可知,若对任意,都有,则,故选:D【题目点拨】本题主要考查函数的图象变换,考查数形结合思想,属于中档题7、B【解题分析】根据等比数列相关计算得到,,进而求出与,代入后得到,利用指数函数和二次函数单调性得到当时,取得最小值.【题目详解】显然,由题意得:,,两式相除得:,将代入,解得:,所以,所以,,所以,其中单调递增,所以当时,取得最小值.故选:B8、B【解题分析】根据题意,点关于直线对称点的性质,以及椭圆的定义,即可求解.【题目详解】根据题意,设点关于直线的对称点,则,解得,即.根据椭圆的定义可知,,当、、三点共线时,长轴长取最小值,即,由且,得,因此椭圆C的短轴的最小值为.故选:B.9、B【解题分析】由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.【题目详解】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得所求椭圆方程为,故选B法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B【题目点拨】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养10、D【解题分析】根据等差数列等差中项的性质,求和公式及单调性分别判断.【题目详解】因为,,所以,则,故A正确;当时,取得最大值,故B正确;,故C正确;因为,,,所以使得成立的最大自然数是,故D错误.故选:D11、C【解题分析】用检验法,由通项公式验证是否符合数列各项,结合排除法可得【题目详解】第一项为正数,BD中求出第一项均为负数,排除,而AC均满足,A中,,排除A,C中满足,,,故选:C12、D【解题分析】以,,的方向分別为x轴、y轴、z轴的正方向,建立空间直角坐标系,利用向量法即可求出答案.【题目详解】解:由题意知,CA,CB,CC1两两垂直,以,,的方向分別为x轴、y轴、z轴的正方向,建立如图所示的空间直角坐标系,则,,,,设平面的法向量为,则令,得.因为,所以,故直线BC与平面所成角的正弦值为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、200【解题分析】先根据分层抽样的方法计算出该单位青年职工应抽取的人数,进而算出青年职工的总人数.【题目详解】由题意,从中抽取100名员工作为样本,需要从该单位青年职工中抽取(人).因为每人被抽中的概率是0.2,所以青年职工共有(人).故答案:200.14、【解题分析】设一组基地向量,将目标用基地向量表示,然后根据向量的运算法则运算即可【题目详解】设,则有:则有:根据,解得:故答案为:15、【解题分析】由,令,解得或,且时,;时,;时,,所以当时,函数取得极小值考点:导数在函数中的应用;极值的条件16、【解题分析】根据递推公式一一计算即可;【题目详解】解:因为,所以,,,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,定圆.【解题分析】(1)由题可得,,即求;(2)由题可设直线的方程,利用韦达定理及条件可得直线恒过定点,则以为直径的圆适合题意,即得.【小问1详解】由题设知,椭圆上顶点为,且在直线上∴,即又点在椭圆上,∴解得,∴椭圆C的方程为;【小问2详解】设,,当直线斜率存在,设直线为:联立方程,化简得∴,,∵,∴又∵,∴将,代入,化简得,即则或,①当时,直线恒过定点与点重合,不符题意.②当时,直线恒过定点,记为点,∵,∴以为直径,其中点为圆心的圆恒经过两点,则圆方程为:;当直线斜率不存在,设方程为,,,且,,∴,解得或(舍去),,取,以为直径作圆,圆方程为:恒经过两点,综上所述,存在定圆恒经过两点.【题目点拨】关键点点睛:本题第二问的关键是证明直线恒过定点,结合条件可得以为直径的圆,适合题意即得.18、(1)(2)【解题分析】(1)建立空间直角坐标系,用点到面的距离公式即可算出答案;(2)先求出两个面的法向量,然后用二面角公式即可.【小问1详解】∵平面平面∴PB⊥AB,PB⊥BC,又两两互相垂直,所以,以点为坐标原点,分别为轴,轴,轴建立如图所示的空间直角坐标系,D(3,6,0),A(0,6,0)设平面的一个法向量所以n⋅PD令,可得记点到平面的距离为,则d=【小问2详解】由(1)可知平面的一个法向量为平面的一个法向量为设二面角的平面角为由图可知,19、(1)(2)【解题分析】由已知式子变形可得是以为首项,为公比的等比数列,由等比数列的通项公式易得利用错位相减法,得到数列的前项和为解析:(1)由,()知,又,∴是以为首项,为公比的等比数列,∴,∴(2),,两式相减得,∴点睛:本题主要考查数列的证明,错位相减法等基础知识,考查学生的分析问题解决问题的能力,转化能力和计算能力.第一问中将已知的递推公式进行变形,转化为的形式来证明,还可以根据等比数列的定义来证明;第二问,将第一问中得到的结论代入,先得到的表达式,利用错位相减法,即可得到数列的前项和为20、(1)证明见解析(2)【解题分析】(1)利用等比数列的定义即可证明.(2)利用错位相减法即可求解.【小问1详解】当时,,所以:数列是公比为3的等比数列;【小问2详解】由(1)知,数列是以3为首项,以3为公比的等比数列,所以:,所以:,,所以,①所以,②①②可得.21、(1)(2)证明见解析.【解题分析】(1)利用导数判断出在上单增,在上单减,在处取得唯一的极值,列不等式组,即可求出实数a的取值范围;(2)记函数,把证明,转化为只需证明,用分析法证明即可.【小问1详解】,定义域为,.令,解得:;令,解得:所以在上单增,在上单减,在处取得唯一的极值.要使函数在上有极值,只需,解得:,即实数a的取值范围为.【小问2详解】记函数.则函数有两个不等实根.因为,,两式相减得,,两式相加得,.因为,所以要证,只需证明,只需证明,只需证明,.证.设,只需证明.记,则,所以在上2单增,所以,所以,即,所以.即证.【题目点拨】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)利用导数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论