版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省黑河市2024年数学高二上期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,矩形BDEF所在平面与正方形ABCD所在平面互相垂直,,,点P在线段EF上.给出下列命题:①存在点P,使得直线平面ACF;②存在点P,使得直线平面ACF;③直线DP与平面ABCD所成角的正弦值的取值范围是;④三棱锥的外接球被平面ACF所截得的截面面积是.其中所有真命题的序号()A.①③ B.①④C.①②④ D.①③④2.已知向量,满足条件,则的值为()A.1 B.C.2 D.3.抛物线的准线方程是,则实数的值为()A. B.C.8 D.4.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440 B.330C.220 D.1105.方程所表示的曲线为()A.射线 B.直线C.射线或直线 D.无法确定6.双曲线的离心率是,则双曲线的渐近线方程是()A. B.C. D.7.若点P在曲线上运动,则点P到直线的距离的最大值为()A. B.2C. D.48.在平面上有及内一点O满足关系式:即称为经典的“奔驰定理”,若的三边为a,b,c,现有则O为的()A.外心 B.内心C.重心 D.垂心9.抛物线的准线方程为,则实数的值为()A. B.C. D.10.已知双曲线,过点作直线l,若l与该双曲线只有一个公共点,这样的直线条数为()A.1 B.2C.3 D.411.两位同学课余玩一种类似于古代印度的“梵塔游戏”:有3个柱子甲、乙、丙,甲柱上有个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图).把这个盘子从甲柱全部移到乙柱游戏结束,在移动的过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下.设游戏结束需要移动的最少次数为,则当时,和满足A. B.C. D.12.记不超过x的最大整数为,如,.已知数列的通项公式,则使的正整数n的最大值为()A.5 B.6C.15 D.16二、填空题:本题共4小题,每小题5分,共20分。13.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难人微”.事实上,很多代数问题可以转化为几何问题加以解决,如:与相关的代数问题可以转化为点与点之间距离的几何问题.结合上述观点,可得方程的解是__________.14.若双曲线的一条渐近线的倾斜角为,则双曲线的离心率为___________.15.各项均为正数的等比数列的前n项和为,满足,,则___________.16.过点,且周长最小的圆的标准方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆M经过点F(2,0),且与直线x=-2相切.(1)求圆心M的轨迹C的方程;(2)过点(-1,0)的直线l与曲线C交于A,B两点,若,求直线l的斜率k的取值范围.18.(12分)已知数列的首项,且满足.(1)求证:数列是等比数列;(2)求数列的前n项和.19.(12分)如图,在四棱锥中,为平行四边形,,平面,且,点是的中点.(1)求证:平面;(2)在线段上(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.20.(12分)已知数列满足,且,,成等比数列.(1)求数列的通项公式;(2)设数列的前项和为,求的最小值及此时的值.21.(12分)已知椭圆的离心率为,右焦点F到上顶点的距离为.(1)求椭圆的方程;(2)是否存在过点F且与x轴不垂直的直线与椭圆交于A、B两点,使得点C()在线段AB的中垂线上?若存在,求出直线l:若不存在,说明理曲.22.(10分)如图,在三棱锥中,,点为线段上的点.(1)若平面,试确定点的位置,并说明理由;(2)若,,,在(1)成立的前提下,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】当点P是线段EF中点时判断①;假定存在点P,使得直线平面ACF,推理导出矛盾判断②;利用线面角的定义转化列式计算判断③;求出外接圆面积判断④作答.【题目详解】取EF中点G,连DG,令,连FO,如图,在正方形ABCD中,O为BD中点,而BDEF是矩形,则且,即四边形DGFO是平行四边形,即有,而平面ACF,平面ACF,于是得平面ACF,当点P与G重合时,直线平面ACF,①正确;假定存在点P,使得直线平面ACF,而平面ACF,则,又,从而有,在中,,DG是直角边EF上中线,显然在线段EF上不存在点与D连线垂直于DG,因此,假设是错的,即②不正确;因平面平面,平面平面,则线段EF上的动点P在平面上的射影在直线BD上,于是得是直线DP与平面ABCD所成角的,在矩形BDEF中,当P与E不重合时,,,而,则,当P与E重合时,,,因此,,③正确;因平面平面,平面平面,,平面,则平面,,在中,,显然有,,由正弦定理得外接圆直径,,三棱锥的外接球被平面ACF所截得的截面是的外接圆,其面积为,④正确,所以所给命题中正确命题的序号是①③④.故选:D【题目点拨】结论点睛:两个平面互相垂直,则一个平面内任意一点在另一个平面上的射影都在这两个平面的交线上.2、A【解题分析】先求出坐标,进而根据空间向量垂直的坐标运算求得答案.【题目详解】因为,所以,解得.故选:A.3、B【解题分析】化简方程为,求得抛物线的准线方程,列出方程,即可求解.【题目详解】由抛物线,可得,所以,所以抛物线的准线方程为,因为抛物线的准线方程为,所以,解得.故选:B.4、A【解题分析】由题意得,数列如下:则该数列的前项和为,要使,有,此时,所以是第组等比数列的部分和,设,所以,则,此时,所以对应满足条件的最小整数,故选A.点睛:本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.Ⅱ卷5、C【解题分析】将方程化为或,由此可得所求曲线.【题目详解】由得:或,即或,方程所表示的曲线为射线或直线.故选:C.6、B【解题分析】利用双曲线的离心率,以及渐近线中,关系,结合找关系即可【题目详解】解:,又因为在双曲线中,,所以,故,所以双曲线的渐近线方程为,故选:B7、A【解题分析】由方程确定曲线的形状,然后转化为求圆上的点到直线距离的最大值【题目详解】由曲线方程为知曲线关于轴成轴对称,关于原点成中心对称图形,在第一象限内,方程化为,即,在第一象限内,曲线是为圆心,为半径的圆在第一象限的圆弧(含坐标轴上的点),实际上整个曲线就是这段圆弧及其关于坐标轴.原点对称的图形加上原点,点到直线的距离为,所以所求最大值为故选:A8、B【解题分析】利用三角形面积公式,推出点O到三边距离相等。【题目详解】记点O到AB、BC、CA的距离分别为,,,,因为,则,即,又因为,所以,所以点P是△ABC的内心.故选:B9、B【解题分析】由题得,解方程即得解.【题目详解】解:抛物线的准线方程为,所以.故选:B10、D【解题分析】先确定双曲线的右顶点,再分垂直轴、与轴不垂直两种情况讨论,当与轴不垂直时,可设直线方程为,联立直线与抛物线方程,消元整理,再分、两种情况讨论,即可得解【题目详解】解:根据双曲线方程可知右顶点为,使与有且只有一个公共点情况为:①当垂直轴时,此时过点的直线方程为,与双曲线只有一个公共点,②当与轴不垂直时,可设直线方程为联立方程可得当即时,方程只有一个根,此时直线与双曲线只有一个公共点,当时,,整理可得即故选:D11、C【解题分析】通过写出几项,寻找规律,即可得到和满足的递推公式.【题目详解】若甲柱有个盘,甲柱上的盘从上往下设为,其中,,当时,将移到乙柱,只移动1次;当时,将移到乙柱,将移到乙柱,移动2次;当时,将移到丙柱,将移到丙柱,将移到乙柱,再将移到乙柱,将移到乙柱,;当时,将上面的3个移到丙柱,共次,然后将移到乙柱,再将丙柱的3个移到乙柱,共次,所以次;当时,将上面的4个移到丙柱,共次,然后将移到乙柱,再将丙柱的4个移到乙柱,共次,所以次;……以此类推,可知,故选.【题目点拨】主要考查了数列递推公式的求解,属于中档题.这类型题的关键是写出几项,寻找规律,从而得到对应的递推公式.12、C【解题分析】根据取整函数的定义,可求出的值,即可得到答案;【题目详解】,,,,,,当时,,使的正整数n的最大值为,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】根据题意,列方程计算即可【题目详解】因为,所以,可转化为点到点和点的距离之和为,所以点在椭圆上,则,解得.故答案为:14、2【解题分析】利用双曲线的渐近线的倾斜角,求解,关系,然后求解离心率,即可求解.【题目详解】双曲线一条渐近线的倾斜角为,可得,所以,所以双曲线的离心率为.故答案为:2.15、【解题分析】利用等比数列的通项公式和前项和公式,即可得到答案.【题目详解】由题意各项均为正数的等比数列得:,故答案为:16、【解题分析】方法一:根据当线段为圆的直径时,圆周长最小,由线段的中点为圆心,其长一半为半径求解;方法二:根据当线段为圆的直径时,圆周长最小,根据以AB为直径的圆的方程求解.【题目详解】方法一:当线段为圆的直径时,过点,的圆的半径最小,从而周长最小,即圆心为线段的中点,半径则所求圆的标准方程为方法二:当线段为圆的直径时,过点,的圆的半径最小,从而周长最小又,,故所求圆的方程为,整理得,所以所求圆的标准方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)设圆心,轨迹两点的距离公式列出方程,整理方程即可;(2)设直线l的方程和点A、B的坐标,直线方程联立抛物线方程,消去x得出关于y的一元二次方程,结合根的判别式和韦达定理表示出弦,进而列出不等式,解之即可.【小问1详解】设圆心,由题意知,,整理,得,即圆心M的轨迹C方程为:;【小问2详解】由题意知,过点(-1,0)的直线l与抛物线C相交于点A、B,所以直线l的斜率存在且不为0,设直线,点,则,消去x,得,或,,同理可得,所以,即,由,得,解得,综上,或,所以或,即直线l的斜率的取值范围为.18、(1)证明见解析;(2)当为偶数时,;当为奇数时,.【解题分析】(1)根据等比数列的定义进行证明即可;(2)利用分组求和法,结合错位相减法进行求解即可.【小问1详解】由题知:所以又因为所以所以数列为以-1为首项,-1为公比的等比数列;【小问2详解】由(1)知:,所以,,记,所以,当为偶数时,;当为奇数时,;记两式相减得:,所以,所以,当偶数时,;当为奇数时,.19、(1)见解析(2)存在,【解题分析】(1)连接交于点,由三角形中位线性质知,由线面平行判定定理证得结论;(2)以为原点建立空间直角坐标系,假设,可用表示出点坐标;根据二面角的向量求法可根据二面角的余弦值构造出关于的方程,从而解得结果.【题目详解】(1)连接交于点,连接,四边形为平行四边形,为中点,又为中点,,平面,平面,平面;(2)平面,,两两互相垂直,则以为坐标原点,可建立如下图所示的空间直角坐标系:则,,,,,,设,且,则,,即,设平面的法向量,又,,则,令,则,,;设平面的一个法向量,又,,则,令,则,,;,解得:或,二面角的余弦值为,二面角为锐二面角,不满足题意,舍去,即.在线段上存在点,时,二面角的余弦值为.【题目点拨】本题考查立体几何中的线面平行关系的证明、存在性问题的求解;求解存在性问题的关键是能够利用共线向量的方式将所求点坐标表示出来,进而利用二面角的向量求法构造方程;易错点是忽略二面角的范围,造成参数值求解错误.20、(1)(2);或【解题分析】(1)由题意得到数列为公差为的等差数列,结合,,成等比数列,列出方程求得,即可得到数列的通项公式;(2)由,得到时,,当时,,当时,,结合等差数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南蝴蝶泉导游词
- DB12T 481-2013 洗染业皮具护理服务规范
- 七夕节促销活动策划
- 高等数学教程 上册 第4版 测试题及答案 高数2-测试一 - 答案
- 影响货币供给量的因素有哪些
- 阳江职业技术学院附属实验学校八年级上学期语文第一次月考试卷
- 三年级数学(上)计算题专项练习附答案
- 胶管采购合同(2篇)
- 南京工业大学浦江学院《商务谈判》2023-2024学年第一学期期末试卷
- 江苏盱眙经济开发区圣山路及新海大道道路改造工程施工组织设计
- 三年级数学(上)计算题专项练习附答案集锦
- 历史期中复习课件七年级上册复习课件(部编版2024)
- 7.2.2 先天性行为和学习行为练习 同步练习
- 2024-2025学年八年级物理上册 4.2光的反射说课稿(新版)新人教版
- 《现代管理原理》章节测试参考答案
- 电子元器件有效贮存期、超期复验及装机前的筛选要求
- 2024秋期国家开放大学专科《高等数学基础》一平台在线形考(形考任务一至四)试题及答案
- 怀感恩与爱同行 主题班会课件
- 停车收费系统购买合同范本
- 农村环境长效保洁服务投标方案(技术方案)
- 厂区升级改造项目方案
评论
0/150
提交评论