版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省建水县数学高二上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个袋中装有大小和质地相同的5个球,其中有2个红色球,3个绿色球,从袋中不放回地依次随机摸出2个球,下列结论正确的是()A.第一次摸到绿球的概率是 B.第二次摸到绿球的概率是C.两次都摸到绿球的概率是 D.两次都摸到红球的概率是2.在三棱锥中,,D为上的点,且,则()A. B.C. D.3.在等差数列中,,,则()A. B.C. D.4.某几何体的三视图如图所示,则该几何体的体积为A.54 B.45C.27 D.815.中共一大会址、江西井冈山、贵州遵义、陕西延安是中学生的几个重要的研学旅行地.某中学在校学生人,学校团委为了了解本校学生到上述红色基地研学旅行的情况,随机调查了名学生,其中到过中共一大会址或井冈山研学旅行的共有人,到过井冈山研学旅行的人,到过中共一大会址并且到过井冈山研学旅行的恰有人,根据这项调查,估计该学校到过中共一大会址研学旅行的学生大约有()人A. B.C. D.6.已知是椭圆右焦点,点在椭圆上,线段与圆相切于点,且,则椭圆的离心率等于()A. B.C. D.7.在中,,,,若该三角形有两个解,则范围是()A. B.C. D.8.如果命题为真命题,为假命题,那么()A.命题,都是真命题 B.命题,都是假命题C.命题,至少有一个是真命题 D.命题,只有一个是真命题9.春秋时期孔子及其弟子所著的《论语·颜渊》中有句话:“非礼勿视,非礼勿听,非礼勿言,非礼勿动.”意思是:不符合礼的不看,不符合礼的不听,不符合礼的不说,不符合礼的不做.“非礼勿听”可以理解为:如果不合礼,那么就不听.从数学角度来说,“合礼”是“听”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件10.已知椭圆和双曲线有共同的焦点,分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于()A.4 B.2C.2 D.311.已知,是椭圆的两焦点,是椭圆上任一点,从引外角平分线的垂线,垂足为,则点的轨迹为()A.圆 B.两个圆C.椭圆 D.两个椭圆12.在数列中,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.正三棱柱的底面边长为2,侧棱长为,则与侧面所成角的正弦值为______14.已知数列则是这个数列的第________项.15.写出同时满足以下三个条件的数列的一个通项公式______.①不是等差数列,②是等比数列,③是递增数列16.已知实数x,y满足约束条件,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前项和,且成等差数列.(1)求数列的通项公式;(2)记数列前项和,求使成立的的最小值18.(12分)已知椭圆,斜率为的动直线与椭圆交于A,B两点,且直线与圆相切.(1)若,求直线的方程;(2)求三角形的面积的取值范围.19.(12分)已知函数.(1)若,求的极值;(2)若有两个零点,求实数a取值范围.20.(12分)在等比数列中,是与的等比中项,与的等差中项为6(1)求的通项公式;(2)设,求数列前项和21.(12分)某电脑公司为调查旗下A品牌电脑的使用情况,随机抽取200名用户,根据不同年龄段(单位:岁)统计如下表:分组频率/组距0.010.040.070.060.02(1)根据上表,试估计样本的中位数、平均数(同一组数据以该组区间的中点值为代表,结果精确到0.1);(2)按照年龄段从内的用户中进行分层抽样,抽取6人,再从中随机选取2人赠送小礼品,求恰有1人在内的概率22.(10分)已知椭圆经过点,(1)求椭圆的方程;(2)已知直线的倾斜角为锐角,与圆相切,与椭圆交于、两点,且的面积为,求直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】对选项A,直接求出第一次摸球且摸到绿球的概率;对选项B,第二次摸到绿球分两种情况,第一次摸到绿球且第二也摸到绿球和第一次摸到红球且第二次摸到绿球;对选项C,直接求出第一次摸到绿球且第二也摸到绿球的概率;对选项D,直接求出第一次摸到红球且第二也摸到红球的概率【题目详解】对选项A,第一次摸到绿球的概率为:,故错误;对选项B,第二次摸到绿球的概率为:,故错误;对选项C,两次都摸到绿球的概率为:,故正确;对选项D,两次都摸到红球的概率为:,故错误故选:C2、B【解题分析】根据几何关系以及空间向量的线性运算即可解出【题目详解】因为,所以,即故选:B3、B【解题分析】利用等差中项的性质可求得的值,进而可求得的值.【题目详解】由等差中项的性质可得,则.故选:B.4、B【解题分析】由三视图可得该几何体是由平行六面体切割掉一个三棱锥而成,直观图如图所示,所以该几何体的体积为故选B点睛:本题考查了组合体的体积,由三视图还原出几何体,由四棱柱的体积减去三棱锥的体积.5、B【解题分析】作出韦恩图,设调查的学生中去过中共一大会址研学旅行的学生人数为,根据题意求出的值,由此可得出该学校到过中共一大会址研学旅行的学生人数.【题目详解】如下图所示,设调查的学生中去过中共一大会址研学旅行的学生人数为,由题意可得,解的,因此,该学校到过中共一大会址研学旅行的学生的人数为.故选:B.【题目点拨】本题考查韦恩图的应用,同时也考查了利用分层抽样求样本容量,考查计算能力,属于基础题.6、A【解题分析】结合椭圆的定义、勾股定理列方程,化简求得,由此求得离心率.【题目详解】圆的圆心为,半径为.设左焦点为,连接,由于,所以,所以,所以,由于,所以,所以,,.故选:A7、D【解题分析】根据三角形解得个数可直接构造不等式求得结果.【题目详解】三角形有两个解,,即.故选:D.8、D【解题分析】由命题为真命题,可判断二者至少有一个为真命题,由为假命题,可判断二者至少有一个为假命题,由此可得答案.【题目详解】命题为真命题,说明二者至少有一个为真命题,为假命题,说明二者至少有一个为假命题,综合上述,可知命题,只有一个是真命题,故选:D9、B【解题分析】如果不合礼,那么就不听.转化为它的逆否命题.即可判断出答案.【题目详解】如果不合礼,那么就不听的逆否命题为:如果听,那么就合理.故“合礼”是“听”的必要条件.故选:B.10、A【解题分析】设椭圆的长半轴长为,双曲线的实半轴长为,由定义可得,,在中利用余弦定理可得,即可求出结果.【题目详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设在第一象限,根据椭圆和双曲线定义,得,,,由可得,又,在中,,即,化简得,两边同除以,得.故选:A.【题目点拨】关键点睛:本题考查共焦点的椭圆与双曲线的离心率问题,解题的关键是利用定义以及焦点三角形的关系列出齐次方程式进行求解.11、A【解题分析】设的延长线交的延长线于点,由椭圆性质推导出,由题意知是△的中位线,从而得到点的轨迹是以为圆心,以为半径的圆【题目详解】是焦点为、的椭圆上一点为的外角平分线,,设的延长线交的延长线于点,如图,,,,由题意知是△的中位线,,点的轨迹是以为圆心,以为半径的圆故选:A12、A【解题分析】根据已知条件,利用累加法得到的通项公式,从而得到.【题目详解】由,得,所以,所以.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】作图,考虑底面是正三角形,按照线面夹角的定义构造直角三角形即可.【题目详解】依题意,作图如下,取的中点G,连结,∵是正三角形,∴,,又∵是正三棱柱,∴底面,∴,即平面,,与平面的夹角=,在中,,故答案为:.14、12【解题分析】根据被开方数的特点求出数列的通项公式,最后利用通项公式进行求解即可.【题目详解】数列中每一项被开方数分别为:6,10,14,18,22,…,因此这些被开方数是以6为首项,4为公差的等差数列,设该等差数列为,其通项公式为:,设数列为,所以,于是有,故答案为:15、【解题分析】由条件②写出一个等比数列,再求出并确保单调递增即可作答.【题目详解】因是等比数列,令,当时,,,是递增数列,令是互不相等的三个正整数,且,若,,成等差数列,则,即,则有,显然、都是正整数,,都是偶数,于是得是奇数,从而有不成立,即,,不成等差数列,数列不成等差数列,所以.故答案为:16、【解题分析】作出该不等式表示的平面区域,由的几何意义结合距离公式得出答案.【题目详解】该不等式组表示的平面区域,如下图所示过点作直线的垂线,垂足为因为表示原点与可行域中点之间的距离,所以的最小值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)10.【解题分析】(1)借助于将转化为,进而得到数列为等比数列,通过首项和公比求得通项公式;(2)整理数列的通项公式,可知数列为等比数列,求得前n项和,代入不等式可求得n的最小值试题解析:(1)由已知,有,即从而又因为成等差数列,即所以,解得所以,数列是首项为2,公比为2的等比数列故(2)由(1)得.所以由,得,即因为,所以.于是,使成立的n的最小值为10考点:1.数列通项公式;2.等比数列求和18、(1)或(2)【解题分析】(1)设直线,利用圆心到直线的距离等于半径,即可得到方程,求出,即可得解;(2)设,,,利用圆心到直线的距离等于半径,得到,再联立直线与椭圆方程,消元列出韦达定理,利用弦长公式表示出,再根据及基本不等式求出,最后再计算直线斜率不存在时三角形的面积,即可得解;【小问1详解】解:圆,圆心为,半径;设直线,即,则,解得,所以或;【小问2详解】解:因为直线的斜率存在,设,,,即,则,所以,即,联立,消元整理得,所以,,所以所以因为,所以,当且仅当,即时取等号,所以,当轴时,取,,则,此时,所以;19、(1)极小值为,无极大值(2)【解题分析】(1)利用导数求出,分别令、,进而得到函数的单调区间,即可求出极值;(2)利用导数讨论、0时函数的单调性,进而得出函数的最小值小于0,解不等式即可.【小问1详解】函数的定义域为,时,.令,解得,∵在上,,在上,,∴在上单调递减,在上单调递增,∴的极小值为,无极大值.【小问2详解】,当时,,∴在上单调递增,此时不可能有2个零点.当0时.令,得,∵在上,,在上,),∴在上单调递减,在上单调递增,∴的最小值为.∵有两个零点,∴,即,∴.经验证,若,则,且,又,∴有两个零点.综上,a的取值范围是.20、(1);(2).【解题分析】(1)设出等比数列的公比,根据给定条件列出方程求解作答.(2)由(1)的结论求出,再利用分组求和法计算作答.【小问1详解】设等比数列公比为,依题意,,即,解得,所以的通项公式【小问2详解】由(1)知,,.21、(1)中位数为38.6,平均数为38.5岁;(2).【解题分析】(1)由中位数分数据两边的频率相等,列方程求中位数;根据各组数据的中点数乘以频率即可得平均数;(2)由分层抽样确定从中各抽4人、2人,列举出随机选取2人的所有组合,得到恰有1人在的组合数,即可求概率.【题目详解】(1)中位数在中,设为,则,解得.平均数为岁.所以样本的中位数约为38.6,平均数为38.5岁.(2)根据分层抽样法,其中位于中的有4人,记为,,,;位于中的有2人,记为,.从6人中抽取2人,有,,,,,,,,,,,,,,,共15种情况,恰有1人在内的有,,,,,,,,共8种情况,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年劳动合同:员工聘用与管理条款
- 木材边角料回收合同模板
- 卖酒供货合同模板
- 2024年咨询与市场推广服务契约
- 新加坡购房合同模板
- 2024年品牌营销全案策划合同
- 2024年公共设施清洁协议
- 2024年工业自动化设备购买合同
- 建筑有限责任公司项目合同附加协议书
- 2024年城市改造土石方运输中介
- 食安快线理论考核试题及答案
- 头颅CT最全读片-课件
- 三年级上册道德与法治课件-8.安全记心上(平安出行)-部编版 (共13张PPT)
- 三年级上册数学课件-4.9 商中间或末尾有0的除法丨苏教版 (共13张PPT)
- 创伤骨折急救课件
- 五年级上册数学课件-7 解决问题的策略-列举丨苏教版 (共14张PPT)
- 电梯维修报价表格
- 小学趣味识字游戏课件
- 光伏并网系统调试验收报告2016.04
- 尿源性脓毒血症的处理
- 8.2《小二黑结婚》课件37张-统编版高中语文选择性必修中册
评论
0/150
提交评论