江西省赣州市茅店中学2022年高一数学理月考试题含解析_第1页
江西省赣州市茅店中学2022年高一数学理月考试题含解析_第2页
江西省赣州市茅店中学2022年高一数学理月考试题含解析_第3页
江西省赣州市茅店中学2022年高一数学理月考试题含解析_第4页
江西省赣州市茅店中学2022年高一数学理月考试题含解析_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省赣州市茅店中学2022年高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,二面角B-AC-D的大小为(

)A.30° B.45° C.60° D.90°参考答案:D【分析】当平面ACD垂直于平面BCD时体积最大,得到答案.【详解】取中点,连接当平面ACD垂直于平面BCD时等号成立.此时二面角为90°故答案选D【点睛】本题考查了三棱锥体积的最大值,确定高的值是解题的关键.2.已知正方体的棱长为,则它的外接球的半径是

参考答案:3.已知集合,,则=(

)A.[0,1) B.(1,5] C.(-∞,0] D.[5,+∞)参考答案:A由题得,,所以,所以=,故选A.4.已知等差数列的通项公式是,其前n项和为,则数列的前

项和为(

)A.

B.

C.

D.参考答案:C略5.若f(lnx)=3x+4,则f(x)的表达式为()A.3lnx B.3lnx+4 C.3ex D.3ex+4参考答案:D【考点】函数解析式的求解及常用方法.【分析】设t=lnx,则x=et,即可得到f(t)=3et+4,进而得到函数的解析式.【解答】解:设t=lnx,则x=et,所以f(t)=3et+4,所以f(x)=3ex+4.故选D.6.已知函数f(x)=,则下列关于函数y=f[f(x)]+1的零点个数是()A.当a>0时,函数F(x)有2个零点 B.当a>0时,函数F(x)有4个零点C.当a<0时,函数F(x)有2个零点 D.当a<0时,函数F(x)有3个零点参考答案:B【考点】函数零点的判定定理.【专题】计算题;分类讨论;函数的性质及应用.【分析】讨论a,再由分段函数分别代入求方程的解的个数,从而确定函数的零点的个数即可.【解答】解:当a>0时,由af(x)+1+1=0得,f(x)=﹣<0,故ax+1=﹣或log3x=﹣,故有两个不同的解,由log3f(x)+1=0得,f(x)=,故ax+1=或log3x=,故有两个不同的解,故共有四个解,即函数有4个零点;当a<0时,af(x)+1+1=0无解,由log3f(x)+1=0得,f(x)=,故ax+1=(无解)或log3x=,故有﹣个解,故共有一个解,故选B.【点评】本题考查了分类讨论的思想应用及方程的根与函数的零点的关系应用.7.经过点A(2,3)且与直线2x﹣y+1=0垂直的直线方程为()A.2x﹣y﹣1=0 B.x+2y﹣8=0 C.x+2y﹣1=0 D.x﹣2y﹣8=0参考答案:B【考点】IK:待定系数法求直线方程.【分析】设与直线2x﹣y+1=0垂直的直线方程为x+2y+m=0,把点A(2,3)代入可得m.【解答】解:设与直线2x﹣y+1=0垂直的直线方程为x+2y+m=0,把点A(2,3)代入可得:2+6+m=0,解得m=﹣8.∴要求的直线方程为:x+2y﹣8=0.故选:B.8.设a,m,n是三条不同的直线,,是两个不重合的平面,给定下列命题:①;②;③;④;⑤;⑥.其中为真命题的个数为(

)A.1 B.2 C.3 D.4参考答案:B【分析】根据课本的判定定理以及推论,和特殊的例子,可判断正误.【详解】对于①,错误,n可以在平面内;对于②,是错误的,根据线面垂直的判定定理知,当一条直线和面内两条相交直线垂直的时候,才能推出线面垂直;对于③根据课本推论知其结果正确;④直线m和n可以是异面的成任意夹角的两条直线;对于⑤根据课本线面垂直的判定定理得到其正确;对于⑥是错误的,当直线m与直线n,和平面平行并且和平面垂直,此时两条直线互相平行.故答案为:B【点睛】这个题目考查了空间中点线面的位置关系,面面垂直,线面垂直的判定等,对于这种题目的判断一般是利用课本中的定理和性质进行排除,判断。还可以画出样图进行判断,利用常见的立体图形,将点线面放入特殊图形,进行直观判断。9.直线被圆截得的弦长为

()

A、1

B、2

C、3

D、4参考答案:D略10.函数的一个单调递增区间可以是(

)A.

B.

C.

D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.正项等比数列{an}中,,则

.参考答案:1

12.已知log53=a,5b=2,则5a+2b=

.参考答案:12【考点】对数的运算性质.【专题】计算题;函数思想;函数的性质及应用.【分析】利用指数式与对数式的互化代入,求解表达式的值即可.【解答】解:log53=a,5b=2,可得b=log52,5a+2b===12.故答案为:12.【点评】本题考查对数运算法则的应用,指数式与对数式的互化,考查计算能力.13.化简:=

.参考答案:14.函数y=cos(﹣2x)的单调递减区间是(以下k∈Z)

参考答案:[kπ+,kπ+],k∈Z【考点】余弦函数的图象.【专题】转化思想;综合法;三角函数的图像与性质.【分析】由条件利用诱导公式,余弦函数的单调性,求得函数y的减区间.【解答】解:函数y=cos(﹣2x)=cos(2x﹣),令2kπ≤2x﹣≤2kπ+π,求得kπ+≤x≤kπ+,可得它的单调递减区间为[kπ+,kπ+],k∈Z.【点评】本题主要考查诱导公式,余弦函数的单调性,属于基础题.15.函数的最小正周期是

参考答案:

略16.

已知△ABC的一个内角为120°,且三边长构成公差为2的等差数列,则△ABC最大边长为_____。参考答案:

717.已知,且为锐角,则的值为_____。参考答案:解析:,令得代入已知,可得

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)参考答案:(Ⅰ)1;(Ⅱ)19.已知函数(1)若,求函数f(x)的单调性;(2)若存在,使恒有,求实数a的取值范围.参考答案:(1)易得:,若当时有,则在单调递减,在单调递增;(2)令,且,,,在单调递增,若,即,,,此时在单调递减,当,,不成立.若,即,在单调递增,则,,所以在单调递增,所以在单调递增所以,成立,故.

20.已知直线l经过点P(-2,5),且斜率为

(Ⅰ)求直线l的方程;(Ⅱ)求与直线l切于点(2,2),圆心在直线上的圆的方程.

参考答案:解:(Ⅰ)由直线方程的点斜式,得整理,得所求直线方程为 ………………4分(Ⅱ)过点(2,2)与l垂直的直线方程为, ………………6分由得圆心为(5,6), ………………8分∴半径, ………………10分故所求圆的方程为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论