




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024学年江苏省连云港市东海县数学高二上期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.若数列对任意满足,下面选项中关于数列的说法正确的是()A.一定是等差数列B.一定是等比数列C.可以既是等差数列又是等比数列D.可以既不是等差数列又不是等比数列3.已知直线,若直线与垂直,则的倾斜角为()A. B.C. D.4.已知双曲线(,)的左、右焦点分别为,,点A的坐标为,点P是双曲线在第二象限的部分上一点,且,点Q是线段的中点,且,Q关于直线PA对称,则双曲线的离心率为()A.3 B.2C. D.5.某双曲线的一条渐近方程为,且焦点为,则该双曲线的方程是()A. B.C. D.6.设异面直线、的方向向量分别为,,则异面直线与所成角的大小为()A. B.C. D.7.“椭圆的离心率为”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件8.直线与圆的位置关系是()A.相交 B.相切C.相离 D.不确定9.将直线绕着原点逆时针旋转,得到新直线的斜率是()A. B.C. D.10.设等差数列的前项和为,若,则的值为()A.28 B.39C.56 D.11711.已知椭圆的长轴长是短轴长的倍,左焦点、右顶点和下顶点分别为,坐标原点到直线的距离为,则的面积为()A. B.4C. D.12.年底以来,我国多次在重要场合和政策文件中提及碳中和,碳中和指的是二氧化碳排放量和吸收量可以正负抵消,实现二氧化碳“零排放”.二氧化碳的分子是由一个碳原子和两个氧原子构成的,其结构式为.已知氧有、、三种天然同位素,碳有、、三种天然同位素,则由上述同位素可构成的不同二氧化碳分子共有()A.种 B.种C.种 D.种二、填空题:本题共4小题,每小题5分,共20分。13.已知是双曲线的左、右焦点,若为双曲线上一点,且,则__________.14.数列满足,则_______________.15.若点为圆上的一个动点,则点到直线距离的最大值为________16.已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回,在第1次抽到代数题的条件下,第2次抽到几何题的概率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c已知c•cosB+(b-2a)cosC=0(1)求角C的大小(2)若c=2,a+b=ab,求△ABC的面积18.(12分)已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长.19.(12分)已知函数,.(1)当时,求曲线在点处的切线方程;(2)若在区间上有唯一的零点.(ⅰ)求的取值范围;(ⅱ)证明:.20.(12分)某小学调查学生跳绳的情况,在五年级随机抽取了100名学生进行测试,得到频率分布直方图如下,且规定积分规则如下表:每分钟跳绳个数得分17181920(1)求频率分布直方图中,跳绳个数在区间的小矩形的高;(2)依据频率分布直方图,把第40百分位数划为合格线,低于合格分数线的学生需补考,试确定本次测试的合格分数线;(3)依据积分规则,求100名学生的平均得分.21.(12分)已知数列的前n项和为,且,,数列满足:,,,.(1)求数列,的通项公式;(2)求数列的前n项和;(3)若不等式对任意恒成立,求实数k的取值范围22.(10分)已知函数在处的切线方程为.(1)求的解析式;(2)求函数图象上的点到直线的距离的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据充分条件、必要条件的定义判断即可;【题目详解】解:由,得,反之不成立,如,,满足,但是不满足,故“”是“”的充分不必要条件故选:B2、D【解题分析】由已知可得或,结合等差数列和等比数列的定义,可得答案【题目详解】由,得或,即或,若,则数列是等差数列,则B错误;若,当时,数列是等差数列,当时,数列是等比数列,则A错误数列是等差数列,也可以是等比数列;由,不能得到数列为非0常数列,则不可以既是等差又是等比数列,则C错误;可以既不是等差又不是等比数列,如1,3,5,10,20,,故D正确;故选:D3、D【解题分析】由直线与垂直得到的斜率,再利用斜率与倾斜角的关系即可得到答案.【题目详解】因为直线与垂直,且,所以,解得,设的倾斜角为,,所以.故选:D4、C【解题分析】由角平分线的性质可得,结合已知条件即可求双曲线的离心率.【题目详解】由题设,易知:,由知:,即,整理得:.故选:C5、D【解题分析】设双曲线的方程为,利用焦点为求出的值即可.【题目详解】因为双曲线的一条渐近方程为,且焦点为,所以可设双曲线的方程为,则,,所以该双曲线方程为.故选:D.6、C【解题分析】利用空间向量夹角的公式直接求解.【题目详解】,,,.由异面直线所成角的范围为,故异面直线与所成的角为.故选:C7、C【解题分析】讨论椭圆焦点的位置,根据离心率分别求出参数m,由充分必要性的定义判断条件间的充分、必要关系.【题目详解】当椭圆的焦点在轴上时,,得;当椭圆的焦点在轴上时,,得故“椭圆的离心率为”是“”的必要不充分条件故选:C.8、A【解题分析】首先求出直线过定点,再判断点在圆内,即可判断;【题目详解】解:直线恒过定点,又,即点在圆内部,所以直线与圆相交;故选:A9、B【解题分析】由题意知直线的斜率为,设其倾斜角为,将直线绕着原点逆时针旋转,得到新直线的斜率为,化简求值即可得到答案.【题目详解】由知斜率为,设其倾斜角为,则,将直线绕着原点逆时针旋转,则故新直线的斜率是.故选:B.10、B【解题分析】由已知结合等差数列的求和公式及等差数列的性质即可求解.【题目详解】因为等差数列中,,则.故选:B.11、C【解题分析】设,根据题意,可知的方程为直线,根据原点到直线的距离建立方程,求出,进而求出,的值,以及到直线的距离,再根据面积公式,即可求出结果.【题目详解】设,由题意可知,其中,所以的方程为,即所以原点到直线的距离为,所以,即,;所以直线的方程为,所以到直线的距离为;又,所以的面积为.故选:C.12、C【解题分析】分两种情况讨论:两个氧原子相同、两个氧原子不同,分别计算出两种情况下二氧化碳分子的个数,利用分类加法计数原理可得结果.【题目详解】分以下两种情况讨论:若两个氧原子相同,此时二氧化碳分子共有种;若两个氧原子不同,此时二氧化碳分子共有种.由分类加法计数原理可知,由上述同位素可构成的不同二氧化碳分子共有种.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、17【解题分析】根据双曲线的定义求解【题目详解】由双曲线方程知,,,又.,所以(1舍去)故答案为:1714、【解题分析】利用来求得,进而求得正确答案.【题目详解】,,是数列是首项为,公差为的等差数列,所以,所以.故答案为:15、7【解题分析】根据给定条件求出圆C的圆心C到直线l的距离即可计算作答.【题目详解】圆的圆心,半径,点C到直线的距离,所以圆C上点P到直线l距离的最大值为.故答案为:716、.【解题分析】设事件:第1次抽到代数题,事件:第2次抽到几何题,求得,结合条件概率的计算公式,即可求解.【题目详解】由题意,从5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出不再放回,设事件:第1次抽到代数题,事件:第2次抽到几何题,则,,所以在第1次抽到代数题的条件下,第2次抽到几何题的概率为:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)由题意首先利用正弦定理边化角,据此求得,则角C的大小是;(2)由题意结合余弦定理可得,然后利用面积公式可求得△ABC的面积为.试题解析:(1)∵c•cosB+(b-2a)cosC=0,由正弦定理化简可得:sinCcosB+sinBcosC-2sinAcosC=0,即sinA=2sinAcosC,∵0<A<π,∴sinA≠0.∴cosC=.∵0<C<π,∴C=.(2)由(1)可知:C=.∵c=2,a+b=ab,即a2b2=a2+b2+2ab.由余弦定理cosC==,∴ab=(ab)2-2ab-c2.可得:ab=4.那么:△ABC的面积S=absinC=.18、(1);(2).【解题分析】(1)由正弦定理化边为角后,结合两角和的正弦公式、诱导公式可求得;(2)用表示出,然后平方由数量积的运算求得向量的模(线段长度)【题目详解】(1)因为,所以由正弦定理可得,即,因为,所以,,∵,故;(2)由,得,所以,所以.19、(1);(2)(ⅰ);(ⅱ)证明见解析.【解题分析】(1)求出,,利用导数的几何意义即可求得切线方程;(2)(ⅰ)根据题意对参数分类讨论,当时,等价转化,且构造函数,利用零点存在定理,即可求得参数的取值范围;(ⅱ)根据(ⅰ)中所求得到与的等量关系,求得并构造函数,利用导数研究其单调性和最值,则问题得证.【小问1详解】当时,,则,故,,则曲线在点处的切线方程为.【小问2详解】(ⅰ)因为,故可得,因为,则当时,,则,无零点,不满足题意;当时,若在有一个零点,即在有一个零点,也即在有一个零点,又,则单调递增,则只需,解得.综上所述,若在区间上有唯一的零点,则;(ⅱ)由(ⅰ)可知,若在区间上有唯一的零点,则,也即,则,令,则,又在都是单调增函数,故是单调增函数,又,故,则在单调递增,则,故,即证.【题目点拨】本题考查导数的几何意义,利用导数研究函数的零点以及最值;处理问题的关键是合理转化函数零点问题,以及充分利用零点存在定理,熟练掌握构造函数法,属综合困难题.20、(1)(2)(3)分【解题分析】(1)根据频率之和为列方程来求得跳绳个数在区间的小矩形的高.(2)根据百分位数的计算方法计算出合格分数线.(3)根据平均数的求法求得名学生的平均得分.【小问1详解】设跳绳个数在区间的小矩形的高为,则,解得.【小问2详解】第一组的频率为,第二组的频率为,第三组的频率为,第四组的频率为,第五组的频率为,第六组的频率为,所以第百分位数为.也即合格分数线为.【小问3详解】名学生的平均得分为分.21、(1),;(2);(3).【解题分析】(1)由可得数列是等比数列,即可求得,由得数列是等差数列,即可求得.(2)由(1)可得,再利用错位相减法求和即得.(3)将问题等价转化为对任意恒成立,构造数列并判断其单调性,即可求解作答.【小问1详解】数列的前项和为,,,当时,,则,而当时,,即得,因此,数列是以1为首项,3为公比的等比数列,则,数列中,,,则数列是等差数列,而,,即有公差,则,所以数列,的通项公式分别是:,.【小问2详解】由(1)知,,则,则有,两式相减得:,从而得,所以数列的前n项和.【小问3详解】由(1)知,,依题意得对任意恒成立,设,则,当,,为单调递减数列,当,,为单调递增数列,显然有,则当时,取得最大值,即最大值是,因此,,所以实数k取值范围是.【题目点拨】思路点睛:一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玉溪职业技术学院《地理课程与教学论》2023-2024学年第二学期期末试卷
- 武汉纺织大学外经贸学院《隶书楷书(2)》2023-2024学年第二学期期末试卷
- 山东财经大学《语文教学能力实训》2023-2024学年第二学期期末试卷
- 西南财经大学《中国传统体育》2023-2024学年第二学期期末试卷
- 武汉纺织大学《法医学基础实验》2023-2024学年第一学期期末试卷
- 西南医科大学《西方经典名著赏析》2023-2024学年第二学期期末试卷
- 空调安装劳务合同年
- 培训班老师劳动合同
- 商场门面房租赁合同
- 承包坑塘合同协议书
- 第8课第二框课件《化解冲突促进和谐》-【中职专用】中职思想政治《心理健康与职业生涯》(高教版2023·基础模块)
- 2024年河南师范大学附中中招二模英语试卷含答案
- 小小科学家《物理》模拟试卷A(附答案)
- MOOC 以案说法-中南财经政法大学 中国大学慕课答案
- 2024年地理中考二轮复习:跨学科主题学习+课件
- 湖南省张家界市永定区2022-2023学年七年级下学期期中历史试题
- 武汉大学介绍PPT
- 广西桂林市国龙外国语学校2022-2023学年下学期期中考试八年级数学试题+
- 《雷锋的故事》试题和答案
- 档案初中级职称考试试题-参考模板
- 颈椎椎间盘突出症病人护理
评论
0/150
提交评论