![辽宁省葫芦岛市建昌县高级中学2024学年高二上数学期末检测模拟试题含解析_第1页](http://file4.renrendoc.com/view/a783a111f6ea56e217d72dd32cab6c8f/a783a111f6ea56e217d72dd32cab6c8f1.gif)
![辽宁省葫芦岛市建昌县高级中学2024学年高二上数学期末检测模拟试题含解析_第2页](http://file4.renrendoc.com/view/a783a111f6ea56e217d72dd32cab6c8f/a783a111f6ea56e217d72dd32cab6c8f2.gif)
![辽宁省葫芦岛市建昌县高级中学2024学年高二上数学期末检测模拟试题含解析_第3页](http://file4.renrendoc.com/view/a783a111f6ea56e217d72dd32cab6c8f/a783a111f6ea56e217d72dd32cab6c8f3.gif)
![辽宁省葫芦岛市建昌县高级中学2024学年高二上数学期末检测模拟试题含解析_第4页](http://file4.renrendoc.com/view/a783a111f6ea56e217d72dd32cab6c8f/a783a111f6ea56e217d72dd32cab6c8f4.gif)
![辽宁省葫芦岛市建昌县高级中学2024学年高二上数学期末检测模拟试题含解析_第5页](http://file4.renrendoc.com/view/a783a111f6ea56e217d72dd32cab6c8f/a783a111f6ea56e217d72dd32cab6c8f5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省葫芦岛市建昌县高级中学2024学年高二上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量服从正态分布,且,则()A.0.1 B.0.2C.0.3 D.0.42.在数列中,,则()A. B.C.2 D.13.已知,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件4.已知是数列的前项和,,则数列是()A.公比为3的等比数列 B.公差为3的等差数列C.公比为的等比数列 D.既非等差数列,也非等比数列5.命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆的内接四边形是矩形6.如图,在长方体中,是线段上一点,且,若,则()A. B.C. D.7.在数列中,,,,则()A.2 B.C. D.18.高二某班共有60名学生,其中女生有20名,“三好学生”人数是全班人数的,且“三好学生”中女生占一半.现从该班学生中任选1人参加座谈会,则在已知没有选上女生的条件下,选上的学生是“三好学生”的概率为()A. B.C. D.9.若函数,则单调增区间为()A. B.C. D.10.已知直线,,若,则实数的值是()A.0 B.2或-1C.0或-3 D.-311.过点A(3,3)且垂直于直线的直线方程为A. B.C. D.12.在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是()A.相交 B.平行C.垂直 D.不能确定二、填空题:本题共4小题,每小题5分,共20分。13.已知数列的前项和为,且满足,若对于任意的,不等式恒成立,则实数的取值范围为____________.14.若圆C:与圆D2的公共弦长为,则圆D的半径为___________.15.如图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是_________(写出所有正确命题的编号).①当时,S为四边形;②当时,S为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;⑤当时,S的面积为.16.曲线在点处的切线方程是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足,前7项和为(Ⅰ)求的通项公式(Ⅱ)设数列满足,求的前项和.18.(12分)某校为了了解在校学生的支出情况,组织学生调查了该校2014年至2020年学生的人均月支出y(单位:百元)的数据如下表:年份2014201520162017201820192020年份代号t1234567人均月支出y3.94.34.65.45.86.26.9(1)求2014年至2020年中连续的两年里,两年人均月支出都超过4百元的概率;(2)求y关于t的线性回归方程;(3)利用(2)中的回归方程,预测该校2022年的人均月支出.附:最小二乘估计公式:,19.(12分)已知函数.(1)若,求函数在处的切线方程;(2)讨论函数在上的单调性.20.(12分)已知椭圆的中心在原点,焦点在轴上,长轴长为4,离心率等于(1)求椭圆的方程(2)设,若椭圆E上存在两个不同点P、Q满足,证明:直线PQ过定点,并求该定点的坐标.21.(12分)已知数列为各项均为正数的等比数列,若(1)求数列的通项公式;(2)求数列的前n项和22.(10分)已知以点为圆心的圆与直线相切,过点的动直线l与圆A相交于M,N两点(1)求圆A的方程(2)当时,求直线l方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】利用正态分布的对称性和概率的性质即可【题目详解】由,且则有:根据正态分布的对称性可知:故选:A2、A【解题分析】利用条件可得数列为周期数列,再借助周期性计算得解.【题目详解】∵∴,,所以数列是以3为周期的周期数列,∴,故选:A.3、C【解题分析】根据充要条件的定义进行判断【题目详解】解:因为函数为增函数,由,所以,故“”是“”的充分条件,由,所以,故“”是“”的必要条件,故“”是“”的充要条件故选:C4、D【解题分析】由得,然后利用与的关系即可求出【题目详解】因为,所以所以当时,时,所以故数列既非等差数列,也非等比数列故选:D【题目点拨】要注意由求要分两步:1.时,2.时.5、B【解题分析】全称命题的否定特称命题,任意改为存在,把结论否定.【题目详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形,故选:B.6、A【解题分析】将利用、、表示,再利用空间向量的加法可得出关于、、的表达式,进而可求得的值.【题目详解】连接、,因,因为是线段上一点,且,则,因此,因此,.故选:A.7、A【解题分析】根据题中条件,逐项计算,即可得出结果.【题目详解】因为,,,所以,因此.故选:A.8、C【解题分析】设事件表示“选上的学生是男生”,事件表示“选上的学生是三好学生,求出和,利用条件概率公式计算即可求解.【题目详解】设事件表示“选上的学生是男生”,事件表示“选上的学生是‘三好学生’”,则所求概率为.由题意可得:男生有人,“三好学生”有人,所以“三好学生”中男生有人,所以,,故.故选:C.9、C【解题分析】求出导函数,令解不等式即可得答案.【题目详解】解:因为函数,所以,令,得,所以的单调增区间为,故选:C.10、C【解题分析】由,结合两直线一般式有列方程求解即可.【题目详解】由知:,解得:或故选:C.11、D【解题分析】过点A(3,3)且垂直于直线的直线斜率为,代入过的点得到.故答案为D.12、B【解题分析】建立空间直角坐标系,求得平面BB1C1C的法向量和直线MN的方向向量,利用两向量垂直,得到线面平行.【题目详解】建立如图所示的空间直角坐标系,由图可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故选:B.【题目点拨】该题考查的是有关立体几何的问题,涉及到的知识点有利于空间向量判断线面平行,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】先求出,然后当时,由,得,两式相减可求出,再验证,从而可得数列为等比数列,进而可求出,再将问题转化为在上恒成立,所以,从而可求出实数的取值范围【题目详解】当时,,得,当时,由,得,两式相减得,得,满足此式,所以,因为,所以数列是以为公比,为首项的等比数列,所以,所以对于任意的,不等式恒成立,可转化为对于任意的,恒成立,即在上恒成立,所以,解得或,所以实数的取值范围为故答案为:【题目点拨】关键点点睛:此题考查数列通项公的求法,等比数列求和公式的应用,考查不等式恒成立问题,解题的关键是求出数列的通项公式后求得,再将问题转化为在上恒成立求解即可,考查数学转化思想,属于较难题14、【解题分析】首先根据圆与圆的位置关系得到公共弦方程,再根据弦长求解即可.【题目详解】根据得公共弦方程为:.因为公共弦长为,所以直线过圆的圆心.所以,解得.故答案为:15、①②③⑤【解题分析】①由如图当点向移动时,满足,只需在上取点满足,即可得截面为四边形,如图所示,是四边形,故①正确;②当时,即为中点,此时可得PQ∥AD,AP=QD==,故可得截面APQD为等腰梯形,等腰梯形,故②正确;③当时,如图,延长至,使,连接交于,连接交于,连接,可证,由∽,可得,故可得,故③正确;④由③可知当时,只需点上移即可,此时的截面形状仍然如图所示的,如图是五边形,故④不正确;⑤当时,与重合,取的中点,连接,可证,且,可知截面为为菱形,故其面积为,如图是菱形,面积为,故⑤正确,故答案为①②③⑤考点:正方体的性质.16、x-y-2=0【解题分析】解:因为曲线在点(1,-1)处的切线方程是由点斜式可知为x-y-2=0三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2).【解题分析】(1)根据等差数列的求和公式可得,得,然后由已知可得公差,进而求出通项;(2)先明确=,为等差乘等比型通项故只需用错位相减法即可求得结论.解析:(Ⅰ)由,得因为所以(Ⅱ)18、(1);(2);(3)7.8百元.【解题分析】(1)应用列举法,结合古典概型计算公式进行进行求解即可;(2)根据题中所给的公式进行计算求解即可;(3)根据(2)的结论,利用代入法进行求解即可.【小问1详解】2014年至2020年中连续的两年有、、、、、共6种组合,其中只有不满足连续两年人均月支出都超过4百元,所以连续两年人均月支出都超过4百元的概率为;【小问2详解】由已知数据分别求出公式中的量.,,,,所求回归方程为;小问3详解】由(2)知,,将2022年的年份代号代入(2)中的回归方程,得,故预测该校2022年人均月支出为7.8百元.19、(1)(2)答案见解析【解题分析】(1)求出导函数后计算得斜率,由点斜式得直线方程并整理;(2)求出导函数,然后分类讨论它在上的正负得单调性【小问1详解】当时,,则,故切线的斜率.又.所以函数在处的切线方程为:.【小问2详解】由,得①当时,在上单调递减;②当时,在上单调递减;③当时,令,得当时,在上单调递减;当时,在单调递增;④当时,在上单调递增;综上:当时,在上单调递减;当时,在上单调递减,在上单调递增;当时,在上单调递增.20、(1);(2)证明见解析,.【解题分析】(1)由题可得,即求;(2)设直线PQ的方程为,联立椭圆方程,利用韦达定理法可得,即得.【小问1详解】由题可设椭圆的方程为,则,∴,∴椭圆的方程为;【小问2详解】当直线PQ的斜率存在时,可设直线PQ的方程为,设,由,得,∴,∵,,∴,∴,∴,∴,又∴,∴直线PQ的方程为过定点;当直线PQ的斜率不存在时,不合题意.故直线PQ过定点,该定点的坐标为.21、(1)(2)【解题分析】(1)利用等比数列通项公式列出方程组,可求解,,从而写出;(2)化简数列,裂项相消法求和即可.【小问1详解】设数列的公比为,∵,∴,即①∵,∴②②÷①,解得∴∴【小问2详解】∵,∴∴∴22、(1);(2)或.【解题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度办公用品店租赁与品牌合作推广合同
- 二零二五年度艺术报刊物流配送与艺术交流合同
- 2025年度半年租赁合同纠纷快速裁决服务合同
- 三农产品绿色消费认知与引导方案
- 滕竹的离婚协议书
- 临床医学与健康科学作业指导书
- 房屋拆除合同
- 人力资源合作协议书合同
- 跨境电商环境下供应链管理优化方案设计
- 三农行业养殖场动物防疫方案
- 人教版二年级上册加减混合计算300题及答案
- 车间主管年终总结报告
- 2023年四川省成都市武侯区中考物理二诊试卷(含答案)
- 鲜切水果行业分析
- 《中国探月工程》课件
- 义务教育物理课程标准(2022年版)测试题文本版(附答案)
- 人工智能在地理信息系统中的应用
- 第7章-无人机法律法规
- 药剂科基本药物处方用药状况点评工作表
- 拆迁征收代理服务投标方案
- 完形疗法概述
评论
0/150
提交评论