吉林省集安市第一中学2024年高二数学第一学期期末学业水平测试试题含解析_第1页
吉林省集安市第一中学2024年高二数学第一学期期末学业水平测试试题含解析_第2页
吉林省集安市第一中学2024年高二数学第一学期期末学业水平测试试题含解析_第3页
吉林省集安市第一中学2024年高二数学第一学期期末学业水平测试试题含解析_第4页
吉林省集安市第一中学2024年高二数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省集安市第一中学2024年高二数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等比数列中,,是方程的两个实根,则()A.-1 B.1C.-3 D.32.已知椭圆(a>b>0)的离心率为,则=()A. B.C. D.3.已知x是上的一个随机的实数,则使x满足的概率为()A. B.C. D.4.设双曲线的虚轴长为,焦距为,则双曲线的渐近线方程为()A. B.C. D.5.已知函数的图象过点,令.记数列的前n项和为,则()A. B.C. D.6.命题p:存在一个实数﹐它的绝对值不是正数.则下列结论正确的是()A.:任意实数,它的绝对值是正数,为假命题B.:任意实数,它的绝对值不是正数,为假命题C.:存在一个实数,它的绝对值是正数,为真命题D.:存在一个实数,它的绝对值是负数,为真命题7.设太阳光线垂直于平面,在阳光下任意转动棱长为一个单位的立方体,则它在平面上的投影面积的最大值是()A.1 B.C. D.8.已知随机变量服从正态分布,且,则()A.0.6 B.0.4C.0.3 D.0.29.若是双曲线的左右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为,若,则该双曲线的离心率为()A. B.C. D.10.均匀压缩是物理学一种常见现象.在平面直角坐标系中曲线均匀压缩,可用曲线上点的坐标来描述.设曲线上任意一点,若将曲线纵向均匀压缩至原来的一半,则点的对应点为.同理,若将曲线横向均匀压缩至原来的一半,则曲线上点的对应点为.若将单位圆先横向均匀压缩至原来的一半,再纵向均匀压缩至原来的,得到的曲线方程为()A. B.C. D.11.已知椭圆与双曲线有相同的焦点,且它们的离心率之积为1,则椭圆的标准方程为()A. B.C. D.12.命题“”为真命题一个充分不必要条件是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.对于实数表示不超过的最大整数,如.已知数列的通项公式,前项和为,则___________.14.曲线在x=1处的切线方程为__________.15.若椭圆的长轴是短轴的2倍,且经过点,则椭圆的离心率为________.16.在等比数列中,若,,则数列的公比为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列{an}为等差数列,且a1+a5=-12,a4+a8=0.(1)求数列{an}的通项公式;(2)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的通项公式18.(12分)已知函数(1)当时,求的单调递减区间;(2)若关于的方程恰有两个不等实根,求实数的取值范围19.(12分)已知椭圆C:经过点,且离心率为(1)求椭圆C的方程;(2)是否存在⊙O:,使得⊙O的任意切线l与椭圆交于A,B两点,都有.若存在,求出r的值,并求此时△AOB的面积S的取值范围;若不存在,请说明理由20.(12分)已知数列是公差不为0的等差数列,首项,且成等比数列(1)求数列的通项公式;(2)设数列满足,求数列的前n项和21.(12分)已知为坐标原点,椭圆:的左、右焦点分别为,,右顶点为,上顶点为,若,,成等比数列,椭圆上的点到焦点的距离的最大值为求椭圆的标准方程;过该椭圆的右焦点作两条互相垂直的弦与,求的取值范围22.(10分)已知函数(1)若,求函数的单调区间;(2)若函数有两个不相等的零点,证明:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】由韦达定理可知,结合等比中项的性质可求出.【题目详解】解:在等比数列中,由题意知:,,所以,,所以且,即.故选:B.2、D【解题分析】由离心率得,再由转化为【题目详解】因为,所以8a2=9b2,所以故选:D.3、B【解题分析】先解不等式得到的范围,再利用几何概型的概率公式进行求解.【题目详解】由得,即,所以使x满足的概率为故选:B.4、B【解题分析】求出、的值,即可得出双曲线的渐近线方程.【题目详解】由已知可得,,则,因此,该双曲线的渐近线方程为.故选:B.5、D【解题分析】由已知条件推导出,.由此利用裂项求和法能求出【题目详解】解:由,可得,解得,则.∴,故选:【题目点拨】本题考查了函数的性质、数列的“裂项求和”,考查了推理能力与计算能力,属于中档题6、A【解题分析】根据存在量词命题的否定为全称量词命题判断,再利用特殊值判断命题的真假;【题目详解】解:因为命题p“存在一个实数﹐它的绝对值不是正数”为存在量词命题,其否定为“任意实数,它的绝对值是正数”,因为,所以为假命题;故选:A7、C【解题分析】确定正方体投影面积最大时,是投影面与平面AB'C平行,从而求出投影面积的最大值.【题目详解】设正方体投影最大时,是投影面与平面AB'C平行,三个面的投影为两个全等的菱形,其对角线为,即投影面上三条对角线构成边长为的等边三角形,如图所示,所以投影面积为故选:C8、A【解题分析】根据正态曲线的对称性即可求得答案.【题目详解】由题意,正态曲线的对称轴为,则与关于对称轴对称,于是.故选:A.9、D【解题分析】根据已知条件,找出,的齐次关系式即可得到双曲线的离心率.【题目详解】由题意得,,,在中,,因,故,在,由余弦定理得,即,计算得,故.故选:D.【题目点拨】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合转化为a,c的齐次式,然后等式(不等式)两边分别除以a或转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)10、C【解题分析】设单位圆上一点为,经过题设变换后坐标为,则,代入圆的方程即可得曲线方程.【题目详解】由题设,单位圆上一点坐标为,经过横向均匀压缩至原来的一半,纵向均匀压缩至原来的,得到对应坐标为,∴,则,故中,可得:.故选:C.11、A【解题分析】计算双曲线的焦点为,离心率,得到椭圆的焦点为,离心率,计算得到答案.【题目详解】双曲线的焦点为,离心率,故椭圆的焦点为,离心率,即.解得,故椭圆标准方程为:.故选:.【题目点拨】本题考查了椭圆和双曲线的离心率,焦点,椭圆的标准方程,意在考查学生的计算能力.12、B【解题分析】求解命题为真命题的充要条件,再利用集合包含关系判断【题目详解】命题“”为真命题,则≤1,只有是的真子集,故选项B符合题意故选:B二、填空题:本题共4小题,每小题5分,共20分。13、54【解题分析】由,利用裂项相消法求得,再由的定义求解.【题目详解】由已知可得:,,当时,,;当时,,;当时,,;当时,,;当时,;;所以.故答案为:54.14、【解题分析】根据导数的几何意义求切线方程的斜率并求出,再由点斜式写出切线方程即可.【题目详解】由题设,,则,而,所以在x=1处的切线方程为,即.故答案为:.15、【解题分析】分类讨论焦点在轴与焦点在轴两种情况.【题目详解】因为椭圆经过点,当焦点在轴时,可知,,所以,所以,当焦点在轴时,同理可得.故答案为:16、##【解题分析】求出等比数列的公比,利用定义可求得数列的公比.【题目详解】设等比数列的公比为,则,因此,数列的公比为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)an=2n-12;(2).【解题分析】(1)根据等差数列的性质得到,然后根据等差数列的通项公式求出和的值即可.(2)根据(1)的条件求出b2=-24,b1=-8,然后根据等比数列的通项公式求出的值即可.【小问1详解】设等差数列{an}的公差为d,因为a1+a5=2a3=-12,a4+a8=2a6=0,所以,所以,解得,所以an=-10+2(n-1)=2n-12.【小问2详解】设等比数列{bn}的公比为q,因为b2=a1+a2+a3=-24,b1=-8,所以-8q=-24,即q=3,因此.18、(1);(2)【解题分析】(1)求出导数,令,得出变化情况表,即可得出单调区间;(2)分离参数得,构造函数,利用导数讨论单调性,根据与恰有两个不同交点即可得出.【题目详解】(1)当时,函数,则令,得,,当x变化时,的变化情况如下表:1+00+↗极大值↘极小值↗∴在上单调递减(2)依题意,即.则令,则当时,,故单调递增,且;当时,,故单调递减,且∴函数在处取得最大值故要使与恰有两个不同的交点,只需∴实数a的取值范围是【题目点拨】关键点睛:本题考查根据方程根的个数求参数,解题的关键是参数分离,构造函数利用导数讨论单调性,根据函数交点个数判断.19、(1)(2)存在,,【解题分析】(1)利用离心率和椭圆所过点列出方程组,求出,求出椭圆方程;(2)假设存在,分切线斜率存在和不存在分类讨论,根据向量数量积为0求出r的值,表达出△AOB的面积,利用基本不等式求出的取值范围,进而求出△AOB面积的取值范围.【小问1详解】因为椭圆C:的离心率,且过点所以解得所以椭圆C的方程为【小问2详解】假设存在⊙O:满足题意,①切线方程l的斜率存在时,设切线方程l:y=kx+m与椭圆方程联立,消去y得,(*)设,,由题意知,(*)有两解所以,即由根与系数的关系可得,所以因为,所以,即化简得,且,O到直线l的距离所以,又,此时,所以满足题意所以存在圆的方程为⊙O:△AOB的面积,又因为当k≠0时当且仅当即时取等号又因为,所以,所以当k=0时,②斜率不存在时,直线与椭圆交于两点或两点易知存在圆的方程为⊙O:且综上,所以【题目点拨】求解圆锥曲线相关的三角形或四边形面积取值范围问题,需要先设出变量,表达出面积,利用基本不等式或者配方,导函数等求出最值,求出取值范围,特别注意直线斜率存在和不存在的情况,需要分类讨论.20、(1);(2)【解题分析】(1)设数列的公差为d,根据等比中项的概念即可求出公差,再根据等差数列的通项公式即可求出答案;(2)由(1)得,再根据分组求和法即可求出答案【题目详解】解:(1)设数列的公差为d,由已知得,,即,解得或,又,∴,∴;(2)由(1)得,【题目点拨】本题主要考查等差数列的通项公式,考查数列的分组求和法,考查计算能力,属于基础题21、(1)(2)【解题分析】根据,,成等比数列,椭圆上的点到焦点的距离的最大值为.列出关于、、的方程组,求出、的值,即可得出椭圆的方程;对直线和分两种情况讨论:一种是两条直线与坐标轴垂直,可求出两条弦长度之和;二是当两条直线斜率都存在时,设直线的方程为,将直线方程与椭圆方程联立,列出韦达定理,利用弦长公式可计算出的长度的表达式,然后利用相应的代换可求出的长度表达式,将两线段长度表达式相加,利用函数思想可求出两条弦长的取值范围最后将两种情况的取值范围进行合并即可得出答案【题目详解】易知,得,则,而,又,得,,因此,椭圆C的标准方程为;当两条直线中有一条斜率为0时,另一条直线的斜率不存在,由题意易得;当两条直线斜率都存在且不为0时,由知,设、,直线MN的方程为,则直线PQ的方程为,将直线方程代入椭圆方程并整理得:,显然,,,,同理得,所以,,令,则,,设,,所以,,所以,,则综合可知,的取值范围是【题目点拨】本题主要考查待定系数法求椭圆方程及圆锥曲线求范围,属于难题.解决圆锥曲线中的范围问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中范围问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.22、(1)单调递增区间是(4,+∞),单调递减区间是(0,4);(2)证明见解析.【解题分析】(1)求的导函数,结合定义域及导数的符号确定单调区间;(2)法一:讨论、时的零点情况,即可得,构造,利用导数研究在(0,2a)恒成立,结合单调性证明不等式;法二:设,由零点可得,进而应用分析法将结论转化为证明,综合换元法、导数证明结论即可.【小问1详解】函数的定义域为(0,+∞),当a=2时,,则令得,x>4;令得,0<x<4;所以,单调递增区间是(4,+∞);单调递减区间是(0,4).【小问2详解】法一:当a≤0时,>0在(0,+∞)上恒成立,故函数不可能有两个不相等的零点,当a>0时,函数在(2a,+∞)上单调递

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论