山东省日照市日照第一中学2024年高二上数学期末教学质量检测模拟试题含解析_第1页
山东省日照市日照第一中学2024年高二上数学期末教学质量检测模拟试题含解析_第2页
山东省日照市日照第一中学2024年高二上数学期末教学质量检测模拟试题含解析_第3页
山东省日照市日照第一中学2024年高二上数学期末教学质量检测模拟试题含解析_第4页
山东省日照市日照第一中学2024年高二上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省日照市日照第一中学2024年高二上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,为双曲线:的焦点,为,(其中为双曲线半焦距),与双曲线的交点,且有,则该双曲线的离心率为()A. B.C. D.2.斗笠,用竹篾夹油纸或竹叶粽丝等编织,是人们遮阳光和雨的工具.某斗笠的三视图如图所示(单位:),若该斗笠水平放置,雨水垂直下落,则该斗笠被雨水打湿的面积为()A. B.C. D.3.如图是函数的导函数的图象,下列结论中正确的是()A.在上是增函数 B.当时,取得最小值C.当时,取得极大值 D.在上是增函数,在上是减函数4.设函数在上可导,则等于()A. B.C. D.以上都不对5.彬塔,又称开元寺塔、彬县塔,民间称“雷峰塔”,位于陕西省彬县城内西南紫薇山下.某同学为测量彬塔高度,选取了与塔底在同一水平面内的两个测量基点与,现测得,,,在点测得塔顶的仰角为60°,则塔高()A.30m B.C. D.6.若数列的前n项和(n∈N*),则=()A.20 B.30C.40 D.507.函数在单调递增的一个必要不充分条件是()A. B.C. D.8.已知双曲线C的离心率为,则双曲线C的渐近线方程为()A. B.C. D.9.已知条件,条件表示焦点在x轴上的椭圆,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既非充分也非必要条件10.连续抛掷一枚均匀硬币3次,事件“至少2次出现正面”的对立事件是()A.只有2次出现反面 B.至少2次出现正面C.有2次或3次出现正面 D.有2次或3次出现反面11.过原点O作两条相互垂直的直线分别与椭圆交于A、C与B、D,则四边形ABCD面积最小值为()A. B.C. D.12.已知空间向量,,,若,,共面,则m+2t=()A.-1 B.0C.1 D.-6二、填空题:本题共4小题,每小题5分,共20分。13.根据某市有关统计公报显示,随着“一带一路”经贸合作持续深化,该市对外贸易近几年持续繁荣,2017年至2020年每年进口总额(单位:千亿元)和出口总额(单位:千亿元)之间的一组数据如下:2017年2018年2019年2020年若每年的进出口总额,满足线性相关关系,则______;若计划2022年出口总额达到千亿元,预计该年进口总额为______亿元14.若,且数列是严格递增数列或严格递减数列,则实数a取值范围是______15.设,则_________16.将全体正整数排成一个三角形数阵:按照以上排列的规律,第行从左向右的第2个数为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在所有棱长均为2的三棱柱ABC-A1B1C1中,∠B1BC=60°,求证:(1)AB1⊥BC;(2)A1C⊥平面AB1C1.18.(12分)已知椭圆C:的焦距为,点在C上(1)求C的方程;(2)过点的直线与C交于M,N两点,点R是直线:上任意一点,设直线RM,RQ,RN的斜率分别为,,,若,,成等差数列,求的方程.19.(12分)已知抛物线的焦点为,点为抛物线上一点,且.(1)求抛物线方程;(2)直线与抛物线相交于两个不同的点,为坐标原点,若,求实数的值;20.(12分)如图,四边形为矩形,,,为的中点,与交于点,平面.(1)若,求与所成角的余弦值;(2)若,求直线与平面所成角的正弦值.21.(12分)2021年10月16日,搭载“神舟十三号”的火箭发射升空,有很多民众通过手机、电视等方式观看有关新闻.某机构将关注这件事的时间在2小时以上的人称为“天文爱好者”,否则称为“非天文爱好者”,该机构通过调查,从参与调查的人群中随机抽取100人进行分析,得到下表(单位:人):天文爱好者非天文爱好者合计女203050男351550合计5545100(1)能否有99%的把握认为“天文爱好者”或“非天文爱好者”与性别有关?(2)现从抽取的女性人群中,按“天文爱好者”和“非天文爱好者”这两种类型进行分层抽样抽取5人,然后再从这5人中随机选出3人,记其中“天文爱好者”的人数为X,求X的分布列和数学期望附:,其中n=a+b+c+d0.100.050.0100.0050.0012.7063.8416.6357.87910.82822.(10分)如图,是平行四边形,已知,,平面平面.(1)证明:;(2)若,求平面与平面所成二面角的平面角的余弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据求得的关系,结合双曲线的定义以及勾股定理,即可求得的等量关系,再求离心率即可.【题目详解】根据题意,连接,作图如下:显然为直角三角形,又,又点在双曲线上,故可得,解得,由勾股定理可得:,即,即,,故双曲线的离心率为.故选:B.2、A【解题分析】根据三视图可知,该几何体是由一个底面半径为10,高为20的圆锥和宽度为20的圆环组成的几何体,则所求面积积为圆锥的侧面积与圆环的面积之和【题目详解】根据三视图可知,该几何体是由一个底面半径为10,高为20的圆锥和宽度为20的圆环组成的几何体,所以该斗笠被雨水打湿的面积为,故选:A3、D【解题分析】根据导函数的图象判断出函数的单调区间、极值、最值,由此确定正确选项.【题目详解】根据图象知:当,时,函数单调递减;当,时,函数单调递增.所以在上单调递减,在上单调递增,在上单调递减,在上单调递增,故选项A不正确,选项D正确;故当时,取得极小值,选项C不正确;当时,不是取得最小值,选项B不正确;故选:D.4、C【解题分析】根据目标式,结合导数的定义即可得结果.【题目详解】.故选:C5、D【解题分析】在△中有,再应用正弦定理求,再在△中,即可求塔高.【题目详解】由题设知:,又,△中,可得,在△中,,则.故选:D6、B【解题分析】由前项和公式直接作差可得.【题目详解】数列的前n项和(n∈N*),所以.故选:B.7、D【解题分析】求出导函数,由于函数在区间单调递增,可得在区间上恒成立,求出的范围,再根据充分必要条件的定义即可判断得解.【题目详解】由题得,函数在区间单调递增,在区间上恒成立,而在区间上单调递减,选项中只有是的必要不充分条件.选项AC是的充分不必要条件,选项B是充要条件.故选:D8、B【解题分析】根据双曲线的离心率,求出即可得到结论【题目详解】∵双曲线的离心率是,∴,即1+,即1,则,即双曲线的渐近线方程为,故选:B9、A【解题分析】根据条件,求得a的范围,根据充分、必要条件的定义,即可得答案.【题目详解】因为条件表示焦点在x轴上的椭圆,所以,解得或,所以条件是条件q:或的充分不必要条件.故选:A10、D【解题分析】根据对立事件的定义选择【题目详解】对立事件是指事件A和事件B必有一件发生,连续抛掷一枚均匀硬币3次,“至少2次出现正面”即有2次或3次出现正面,对立事件为“有2次或3次出现反面”故选:D11、A【解题分析】直线AC、BD与坐标轴重合时求出四边形面积,与坐标轴不重合求出四边形ABCD面积最小值,再比较大小即可作答.【题目详解】因四边形ABCD的两条对角线互相垂直,由椭圆性质知,四边形ABCD的四个顶点为椭圆顶点时,而,四边形ABCD的面积,当直线AC斜率存在且不0时,设其方程为,由消去y得:,设,则,,直线BD方程为,同理得:,则有,当且仅当,即或时取“=”,而,所以四边形ABCD面积最小值为.故选:A12、D【解题分析】根据向量共面列方程,化简求得.【题目详解】,所以不共线,由于,,共面,所以存在,使,即,,,,,即.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、①.1.6②.3.65千##3650【解题分析】根据给定数表求出样本中心点,代入即可求得,取可求出该年进口总额.【题目详解】由数表得:,,因此,回归直线过点,由,解得,此时,,当时,即,解得,所以,预计该年进口总额为千亿元.故答案为:1.6;3.65千14、【解题分析】根据数列递增和递减的定义求出实数a的取值范围.【题目详解】因为数列是严格递增数列或严格递减数列,所以.若数列是严格递增数列,则,即,即恒成立,故;若数列是严格递减数列,则,即,即恒成立,由,故;综上,实数a的取值范围是故答案为:15、【解题分析】求出函数的导数,再令,即可得出答案.【题目详解】解:由,得,所以.故答案为:.16、【解题分析】通过观察、分析、归纳,找出规律运算求解即可【题目详解】前行共有正整数个,即个,因此第行第个数是全体正整数中第个,即为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解题分析】(1)通过计算·=0来证得AB1⊥BC.(2)通过证明A1C⊥AC1、A1C⊥AC1来证得A1C⊥平面AB1C1.【题目详解】证明:(1)易知<>=120°,=+,则·=(+)·=·+·=2×2×+2×2×=0.所以AB1⊥BC.(2)易知四边形AA1C1C为菱形,所以A1C⊥AC1.因为·=(-)·(-)=(-)·(--)=·-·-·-·+·+·=·-·-·+·=2×2×-4-2×2×+4=0,所以AB1⊥A1C,又AC1∩AB1=A,所以A1C⊥平面AB1C1.18、(1)(2)【解题分析】(1)根据椭圆的焦距为,点在C上,由求解;(2)设,,,的斜率不存在时,则的方程为,与椭圆的方程联立求得M,N的坐标,由,,成等差数列求解;的斜率存在时,设的方程为,与椭圆的方程联立,然后由,,成等差数列,结合韦达定理求解;【小问1详解】解:由题意得,解得,,所以C的方程为.【小问2详解】设,,,当的斜率不存在时,则的方程为,将代入,得.因为,,成等差数列,所以,即,显然当时,方程恒成立.当的斜率存在时,设的方程为,联立得,则,.,.因为,,成等差数列,所以,即恒成立.则,解得.综上所述,的方程为.19、(1)(2)【解题分析】(1)根据抛物线过点,且,利用抛物线的定义求解;(2)设,联立,根据,由,结合韦达定理求解.【小问1详解】解:由抛物线过点,且,得所以抛物线方程为;【小问2详解】设,联立得,,,,则,,即,解得或,又当时,直线与抛物线的交点中有一点与原点重合,不符合题意,故舍去;所以实数的值为.20、(1)(2)【解题分析】(1)以为原点,、所在的直线为、轴,以过点垂直于面的直线为轴,建立空间直角坐标系,利用空间向量法可求得与所成角的余弦值;(2)计算出平面的法向量,利用空间向量法可求得直线与平面所成角的正弦值.【小问1详解】解:如图,以为原点,、所在的直线为、轴,以过点垂直于面的直线为轴,建立空间直角坐标系,,,则,则,故,因为平面,平面,则,若,则,故、、、,则,,.因此,若,则与所成角的余弦值为.【小问2详解】解:若,则、,,,,设平面的法向量为,则,取,可得,,所以直线与平面所成角的正弦值为.21、(1)有(2)分布列见解析,【解题分析】(1)依题意由列联表计算出卡方,与参考数值比较,即可判断;(2)按照分层抽样得到有2人为“天文爱好者”,有3人为“非天文爱好者”,记“天文爱好者”的人数为X,则X的可能值为0,1,2,即可求出所对应的概率,从而得到分布列与数学期望;【小问1详解】解:由题意,所以有99%的把握认为“天文爱好者”或“非天文爱好者”与性别有关.【小问2详解】解:抽取的100人中女性人群有50人,其中“天文爱好者”有20人,“非天文爱好者”有30人,所以按分层抽样在50个女性人群中抽取5人,则有2人为“天文爱好者”,有3人为“非天文爱好者”再从这5人中随机选出3人,记其中“天文爱好者”的人数为X,则X的可能值为0,1,2,∴,,,X的分布列如下表:X012P22、(1)见解析;(2).【解题分析】(1)推导出,取BC的中点F,连结EF,可推出,从而平面,进而,由此得到平面,从而;(2)以为坐标原点,,所在直线分别为,轴,以过点且与平行的直线为轴,建立空间直角坐标系,利用向量法能求出平面与平面所成二面角的余弦值【题目详解】(1)∵是平行四边形,且∴,故,即取BC的中点F,连结EF.∵∴又∵平面平面∴平面∵平面∴∵平面∴平面,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论