版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东深圳平湖外国语学校高二数学第一学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“曲线为焦点在轴上的椭圆”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件2.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,,一辆车从甲地到乙地,恰好遇到2个红灯的概率为()A. B.C. D.3.经过点且与直线垂直的直线方程为()A. B.C. D.4.命题“”的否定是()A. B.C. D.5.下列通项公式中,对应数列是递增数列的是()A B.C. D.6.下图称为弦图,是我国古代三国时期赵爽为《周髀算经》作注时为证明勾股定理所绘制,我们新教材中利用该图作为“()”的几何解释A.如果,,那么B.如果,那么C.对任意实数和,有,当且仅当时等号成立D.如果,那么7.在中国古代,人们用圭表测量日影长度来确定节气,一年之中日影最长一天被定为冬至.从冬至算起,依次有冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31.5尺,小寒、雨水,清明日影长之和为28.5尺,则大寒、惊蛰、谷雨日影长之和为()A.25.5尺 B.34.5尺C.37.5尺 D.96尺8.对于实数a,b,c,下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则9.抛物线的焦点坐标为()A. B.C. D.10.已知向量,,且,则实数等于()A.1 B.2C. D.11.已知是空间的一个基底,若,,若,则()A. B.C.3 D.12.已知等差数列且,则数列的前13项之和为()A.26 B.39C.104 D.52二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,且,则实数________________14.已知点为抛物线的焦点,,点为抛物线上一动点,当最小时,点恰好在以为焦点的双曲线上,则该双曲线的离心率为___________.15.若函数在处有极值,则的值为___________.16.展开式的常数项是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆C过点,,它与x轴的交点为,,与y轴的交点为,,且.(1)求圆C的标准方程;(2)若,直线,从点A发出的一条光线经直线l反射后与圆C有交点,求反射光线所在的直线的斜率的取值范围.18.(12分)已知函数(a是常数).(1)当时,求的单调区间与极值;(2)若,求a的取值范围.19.(12分)已知函数.(1)若,讨论函数的单调性;(2)当时,求在区间上的最小值和最大值.20.(12分)设正项数列的前项和为,已知,(1)求数列的通项公式;(2)数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围21.(12分)已知某电器市场由甲、乙、丙三家企业占有,其中甲厂产品的市场占有率为40%,乙厂产品的市场占有率为36%,丙厂产品的市场占有率为24%,甲、乙、丙三厂产品的合格率分别为,,(1)现从三家企业的产品中各取一件抽检,求这三件产品中恰有两件合格的概率;(2)现从市场中随机购买一台该电器,则买到的是合格品的概率为多少?22.(10分)已知函数(1)讨论的单调性;(2)当时,证明
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】∵“”⇒“方程表示焦点在轴上的椭圆”,“方程表示焦点在轴上的椭圆”⇒“”,∴“”是“方程表示焦点在轴上的椭圆”的充要条件,故选C.2、B【解题分析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解【题目详解】由各路口信号灯工作相互独立,可得某人从甲地到乙地恰好遇到2次红灯的概率:故选:B3、A【解题分析】根据点斜式求得正确答案.【题目详解】直线的斜率为,经过点且与直线垂直的直线方程为,即.故选:A4、C【解题分析】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可.【题目详解】命题“”的否定是“”.故选:C5、C【解题分析】根据数列单调性的定义逐项判断即可.【题目详解】对于A,B选项对应数列是递减数列.对于C选项,,故数列是递增数列.对于D选项,由于.所以数列不是递增数列故选:C.6、C【解题分析】设图中直角三角形边长分别为a,b,则斜边为,则可表示出阴影面积和正方形面积,根据图象关系,可得即可得答案.【题目详解】设图中全等的直角三角形的边长分别为a,b,则斜边为,如图所示:则四个直角三角形的面积为,正方形的面积为,由图象可得,四个直角三角形面积之和小于等于正方形的面积,所以,当且仅当时等号成立,所以对任意实数和,有,当且仅当时等号成立.故选:C7、A【解题分析】由题意可知,十二个节气其日影长依次成等差数列,设冬至日的日影长为尺,公差为尺,利用等差数列的通项公式,求出,即可求出,从而得到答案【题目详解】设从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{},如冬至日的日影长为尺,设公差为尺.由题可知,所以,,,,故选:A8、D【解题分析】判断不等式的真假,就是要考虑在不等式的变形过程中是否遵守不等式变形的规则.【题目详解】若,令,,,,,故A错误;若,令c=0,则,故B错误;若,令a=-1,b=-2,,,故C错误;∵,故,根据不等式运算规则,在不等式的两边同时乘以或除以一个正数,不等式的方向不变,故D正确.故选:D.9、C【解题分析】先把抛物线方程化为标准方程,求出即可求解【题目详解】由,有,可得,抛物线的焦点坐标为故选:C10、C【解题分析】利用空间向量垂直的坐标表示计算即可得解【题目详解】因向量,,且,则,解得,所以实数等于.故选:C11、C【解题分析】由,可得存在实数,使,然后将代入化简可求得结果【题目详解】,,因,所以存在实数,使,所以,所以,所以,得,,所以,故选:C12、A【解题分析】根据等差数列的性质化简已知条件可得的值,再由等差数列前项和及等差数列的性质即可求解.【题目详解】由等差数列的性质可得:,,所以由可得:,解得:,所以数列的前13项之和为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】,利用向量的数量积的坐标运算即可.【题目详解】,则,解得故答案为:14、【解题分析】设点,根据抛物线的定义表示出,将用表示,并逐步转化为一个基本不等式形式,从而求出取最小值时的点的坐标,再根据双曲线的定义及离心率的公式求值.【题目详解】由题意可得,,,抛物线的准线为,设点,根据对称性,不妨设,由抛物线的定义可知,又,所以,当且仅当时,等号成立,此时,设以为焦点的双曲线方程为,则,即,又,,所以离心率.故答案为:.【题目点拨】关键点点睛:本题的关键是将的坐标表达式逐渐转化为一个可以用基本不等式求最值的式子,从而找出取最小值时的点的坐标.15、2或6【解题分析】由解析式得到导函数,结合是函数极值点,即可求的值.【题目详解】由,得,因为函数在处有极值,所以,即,解得2或6.经检验,2或6满足题意.故答案为:2或6.16、【解题分析】求出的通项公式,令的指数为0,即可求解.【题目详解】的通项公式是,,依题意,令,所以的展开式中的常数项为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)设圆C的一般式方程为:,然后根据题意列出方程,解出D,E,F的值即可得到圆的方程;(2)先求出点关于直线l的对称点,设反射光线所在直线方程为,利用直线和圆的位置关系列出不等式解出k的取值范围即可.【题目详解】(1)设圆C的一般式方程为:,令,得,所以,令,得,所以,所以有,所以,①又圆C过点,,所以有,②,③由①②③得,,,所以圆C的一般式方程为,标准方程为;(2)设关于的对称点,所以有,解之得,故点,∴反射光线所在直线过点,设反射光线所在直线方程为:,所以有,所以反射光线所在的直线斜率取值范围为.【题目点拨】本题考查圆的方程的求法,直线和圆的位置关系的应用,考查逻辑思维能力和运算求解能力,属于常考题.18、(1)函数在上单调递增,在上单调递减,极小值是,无极大值.(2)【解题分析】(1)由当,得到,求导,再由,求解;(2)将,转化为成立,令,求其最大值即可.【小问1详解】解:当时,,定义域为,所以,当时,,当时,,所以函数在上单调递增,在上单调递减,所以时,取得极小值是,无极大值.【小问2详解】因为,即成立.设,则,当时,,当时,,所以在上单调递增,在上单调递减,所以,所以,即.19、(1)在和上单调递增,在上单调递减.(2)答案见解析.【解题分析】(1)求解导函数,并求出的两根,得和的解集,从而得函数单调性;(2)由(1)得函数的单调性,从而得最小值,计算,再分类讨论与两种情况下的最大值.【小问1详解】函数定义域为,,时,或,因为,所以,时,或,时,,所以函数在和上单调递增,在上单调递减.【小问2详解】因为,由(1)知,在上单调递减,在上单调递增,所以最小值为,又因为,当时,,此时最小值为,最大值为;当时,,此时最小值为,最大值为.【题目点拨】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用20、(1);(2).【解题分析】(1)利用的关系求的通项公式;(2)由(1)得,应用错位相减法求,根据不等式,讨论n的奇偶性求参数范围即可.【小问1详解】由题设,当时,则,整理得,,则,当时,,又得:,故,所以数列是首项、公差均为2的等差数列,故.【小问2详解】由(1),,所以,,两式相减得,故,所以令,易知:单调递增,若为偶数,则,所以;若为奇数,则,所以,即综上,21、(1)(2)【解题分析】(1)由相互独立事件的概率可得;(2)根据各产品的市场占有率和合格率,由条件概率公式计算可得.【小问1详解】记随机抽取甲乙丙三家企业的一件产品,产品合格分别为事件,,,则三个事件相互独立,恰有两件产品合格为事件D,则故从三家企业的产品中各取一件抽检,则这三件产品中恰有两件合格的概率是【小问2详解】记事件B为购买的电器合格,记随机买一件产品,买到的产品为甲乙丙三个品牌分别为事件,,,,,,,,,故在市场中随机购买一台电器,买到的是合格品的概率为22、(1)答案见解析(2)证明见解析【解题分析】(1)求导得,进而分和两种情况讨论求解即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店厨房承包合同范文
- 销售总监聘用合同
- 小型建筑承包合同模板
- 金融期货合同年
- 酒店用品采购合同
- 抗转发式干扰雷达信号设计与处理方法研究
- 劳动合同终止通知书三篇
- 隐蔽通信中视觉内容隐私保护方法研究
- 2025年北京货运从业资格证考试试题及答案
- 《股票投资培训提纲》课件
- Nokia销售五部曲培训课件
- 电子表格表格会计记账凭证模板
- 制造过程优化与工艺改进培训
- 服务人员队伍稳定措施
- 支气管镜护理测试题
- 大连理工大学信封纸
- 图形创意(高职艺术设计)PPT完整全套教学课件
- 北京版小学英语必背单词
- 艺术课程标准(2022年版)
- 2023年全国4月高等教育自学考试管理学原理00054试题及答案新编
- 稀土配合物和量子点共掺杂构筑发光软材料及其荧光性能研究
评论
0/150
提交评论