国外的纯学术ppt里面有些动画很是生动_第1页
国外的纯学术ppt里面有些动画很是生动_第2页
国外的纯学术ppt里面有些动画很是生动_第3页
国外的纯学术ppt里面有些动画很是生动_第4页
国外的纯学术ppt里面有些动画很是生动_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Background

History0.orderdata1870’sXE.g.:pHtopredictacidconcentrationY1.orderdata1960’sXE.g.:NIRtopredictproteincontentY2.orderdata1990’sXpH5.22.66.8YE.g.:EEMtopredictcontentofaminoacidsBackgroundSpectroscopyPARAFACFluorescenceLF-NMR2ndorderSummaryBackground

FluorescenceBackgroundSpectroscopyPARAFACFluorescenceLF-NMR2ndorderSummaryLightsourceSampleDetectorExcitessampleEmittedfromsampleBackground

FluorescenceBackgroundSpectroscopyPARAFACFluorescenceLF-NMR2ndorderSummaryBackground

FluorescenceXBackgroundSpectroscopyPARAFACFluorescenceLF-NMR2ndorderSummaryBackground

LF-NMRBackgroundSpectroscopyPARAFACFluorescenceLF-NMR2ndorderSummaryNDetectorMagneticFieldRadiosignalSampleX*)

LowField–NuclearMagneticResonanceBackground

LF-NMR*)BackgroundSpectroscopyPARAFACFluorescenceLF-NMR2ndorderSummaryXLagSlabsBackground

LF-NMR:SLICING*)BackgroundSpectroscopyPARAFACFluorescenceLF-NMR2ndorderSummary*)Pedersen,Bro&Engelsen(2001)MagneticResonanceinFoodScience,202-209CanbeseenasanexpansionofPCAfromtwo-waydatatomulti-waydataBackground

PARAFACBackgroundSpectroscopyPARAFACFluorescenceLF-NMR2ndorderSummaryBackground

PARAFACPARAFACI+J+KperfactorPCAI+J×KperfactorPARAFAC

Fluorescence=ABCBackgroundSpectroscopyPARAFACFluorescenceLF-NMR2ndorderSummaryPARAFAC

LF-NMR=ABCBackgroundSpectroscopyPARAFACFluorescenceLF-NMR2ndorderSummaryIntroduction

FluorescenceMakeanautomaticmodelforusewithfluorescencedataNumberoffactorsHandlingscattereffectsPracticalaspect:missingvaluesinthelandscapeBackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummaryFluorescence

#ofFactorsCross-validationStructureinloadingsSplit-halfanalysisJack-knifingA-prioriknowledgeRatiosKnownsamplesBootstrappingNewautomaticmethodBackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummaryRinnan&Bro#ofFactors

DataFluorescencedata12dataset–10samplesineach3-5fluorophoresineachsampleAnalyzedbyPARAFAC81diagnostictoolsModelswithincreasingcomplexity12345Rinnan&BroBackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummary#ofFactors

StructureinloadingsRinnan&BroBackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummary#ofFactors

RatioPCA/PARAFACPARAFACPCANumberofcomponentsRinnan&BroBackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummary#ofFactors

CORCONDIA*)x

MeancoreconsistencyPointofinitializationComparePARAFACandTucker3BackgroundFluorescence#ofFactorsLightscatterPracticalLF-NMR2ndorderSummaryNumberofcomponents*)Bro&Kiers(2003)J.ofChemometrics,274-286#ofFactors

UniquenessinlandscapesRinnan&BroBackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummary#ofFactors

Goodvs.BadRinnan&BroBackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummary#ofFactors

Goodvs.BadRinnan&BroBackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummary#ofFactors

KnownsamplesA-score0.5

00

-2Emissionwavelength(nm)Excitationwavelength(nm)Rinnan&BroBackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummaryFF+2Factors#ofFactors

KnownsamplesRinnan&BroBackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummary812410NumberoffactorsTimesestimated#ofFactors

ResultsRinnan&BroBackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummaryResultatDataset123456789101112

Good

Catechol

Rinnan&BroBackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummaryFluorescence

LightscatterExcitationEmission2ndorder

Rayleigh1storderRayleighRamanBackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryRinnan&Andersen(2004)Lightscatter

Whyaproblem?Rinnan&Andersen(2004)BackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryLightscatter

Whyaproblem?XXRinnan&Andersen(2004)BackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryLightscatter

SampledecompositionRinnan&Andersen(2004)BackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryLightscatter

HandlingscatterSubtractionofstandardCutoffandinsertmissingWeightsModelingofRayleighRinnan&Andersen(2004)BackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryLightscatter

Whymorethanonemethod!?ThedatapresentedsofarisabitsimpleSugardataExcitationEmission1storderRayleighRinnan&Andersen(2004)BackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryLightscatter

Cuttingoff(Hardweights)EmissionloadingsExcitationloadingsRinnan&Andersen(2004)BackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryLightscatter

Weighting-MILESEmissionloadingsExcitationloadingsRinnan&Andersen(2004)BackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryLightscatter

BandofmissingvaluesBackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryRinnan&Andersen(2004)Bandofmissingvalues

HardweightsEmissionloadingsExcitationloadingsRinnan&Andersen(2004)BackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryBandofmissingvalues

Weighting-MILESEmissionloadingsExcitationloadingsRinnan&Andersen(2004)BackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryLightscatter

AnovelmethodTheRayleighscatterwidthhastobeestimatedquiteaccuratelyThebandwidthofmissingdatashouldalsobecorrectWhataboutanautomaticmethodofremovingtheRayleighscatter,thatwasnotsopronetotheestimationofthewidthoftheRayleighscatter?ModelingtheRayleighistheanswer!BackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryRinnan,Booksh&BroLightscatter

ModelingRayleighAGauss-LorentzcurvefittingmethodRinnan,Booksh&BroBackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryLightscatter

ModelingRayleighRinnan,Booksh&BroBackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryLightscatter

ModelingRayleighRinnan,Booksh&BroBackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryLightscatter

Fancy≠goodRinnan,Booksh&BroBackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryLightscatter

WithconstraintsbetterEmissionloadingsExcitationloadingsRinnan,Booksh&BroBackgroundFluorescence#ofFactorsLightscatterBandofNaNModelingNaNLF-NMR2ndorderSummaryFluorescence

MissingvaluesCanbetreatedwith:LettingPARAFAChandlethemissingvaluesWeightingthemissingareadownNon-negativityconstraintsInsertionof0’sintothematrixThygesen,Rinnan,Barsberg&Møller(2004):CehmoLab,71,p.97-106BackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummaryMissingvalues

AlternativesMissingvaluesZerosSignal/DataareaThygesen,Rinnan,Barsberg&Møller(2004):CehmoLab,71,p.97-106BackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummaryMissingvalues

ResultsThygesen,Rinnan,Barsberg&Møller(2004):CehmoLab,71,p.97-106BackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummaryMissingvalues

Results-LandscapesNoneWeightedNon-NegativityZerosThygesen,Rinnan,Barsberg&Møller(2004):CehmoLab,71,p.97-106BackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummaryMissingvalues

Results-ExcitationNoneWeightedNon-NegativityZerosThygesen,Rinnan,Barsberg&Møller(2004):CehmoLab,71,p.97-106BackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummaryMissingvalues

Results-EmissionNoneWeightedNon-NegativityZerosThygesen,Rinnan,Barsberg&Møller(2004):CehmoLab,71,p.97-106BackgroundFluorescence#ofFactorsLightscatterNaNLF-NMR2ndorderSummaryIntroduction

LF-NMRPracticalaspectsofPARAFACandLF-NMR(SLICING)CorrectionofbaselineClassificationPrediction(semi2ndorderprediction)BackgroundFluorescenceLF-NMRCorrectionClassificationRegression2ndorderSummaryLF-NMR

CorrectionBackgroundFluorescenceLF-NMRCorrectionClassificationRegression2ndorderSummaryAndersen&Rinnan(2002):LWT,35,p.687-696Correction

ResidualBackgroundFluorescenceLF-NMRCorrectionClassificationRegression2ndorderSummaryAndersen&Rinnan(2002):LWT,35,p.687-696Correction

FactorsBackgroundFluorescenceLF-NMRCorrectionClassificationRegression2ndorderSummaryAndersen&Rinnan(2002):LWT,35,p.687-696Correction

MethodBackgroundFluorescenceLF-NMRCorrectionClassificationRegression2ndorderSummaryAndersen&Rinnan(2002):LWT,35,p.687-696Correction

CorrecteddataBackgroundFluorescenceLF-NMRCorrectionClassificationRegression2ndorderSummaryAndersen&Rinnan(2002):LWT,35,p.687-696Correction

Result-FactorsBackgroundFluorescenceLF-NMRCorrectionClassificationRegression2ndorderSummaryAndersen&Rinnan(2002):LWT,35,p.687-696LF-NMR

ClassificationSensorydataLF-NMRBackgroundFluorescenceLF-NMRCorrectionClassificationRegression2ndorderSummaryPovlsen,Rinnan,vandenBerg,Andersen&Thybo(2003):LWT,36,p.423-432LF-NMR

ClassificationPCAandSensoryPARAFACandLF-NMRBackgroundFluorescenceLF-NMRCorrectionClassificationRegression2ndorderSummaryPovlsen,Rinnan,vandenBerg,Andersen&Thybo(2003):LWT,36,p.423-432LF-NMR

RegressionPLSSLICINGBackgroundFluorescenceLF-NMRCorrectionClassificationRegression2ndorderSummaryRinnan(2003):IJAS,15,p.393-402LF-NMR

RegressionPLSRPARAFAC1-Q2BackgroundFluorescenceLF-NMRCorrectionClassificationRegression2ndorderSummaryRinnan(2003):IJAS,15,p.393-402Introduction

SecondorderpredictionMeasured(R+G+B)Predicted(Yellow)CalibrationsetNewsamplesErrorBackgroundFluorescenceLF-NMR2ndorderAdvantageAlternativesUncertaintySummaryRinnan,Riu&Bro(2004)Secondorderprediction

UnfoldingfluorescenceRinnan,Riu&Bro(2004)BackgroundFluorescenceLF-NMR2ndorderAdvantageAlternativesUncertaintySummarySecondorderprediction

PLSvsPARAFACUnfold-PLSSamplesExcitationThedata-EEMSamplesDifferentexcitationsEmissionEmissionEmissionPARAFACSamplesEmissionEmissionExcitationSamples+ExcitationEmissionSamples+Excitation+EmissionRinnan,Riu&Bro(2004)BackgroundFluorescenceLF-NMR2ndorderAdvantageAlternativesUncertaintySummarySecondorderprediction

DatasetsCalibrationsetNewsamplesRinnan,Riu&Bro(2004)BackgroundFluorescenceLF-NMR2ndorderAdvantageAlternativesUncertaintySummarySecondorderprediction

PLSvsPARAFACRinnan,Riu&Bro(2004)BackgroundFluorescenceLF-NMR2ndorderAdvantageAlternativesUncertaintySummarySecondorderprediction

Datasets–withinterferentsCalibrationsetNewsamplesRinnan,Riu&Bro(2004)BackgroundFluorescenceLF-NMR2ndorderAdvantageAlternativesUncertaintySummarySecondorderprediction

PLSvsPARAFACMeasuredPredictedRinnan,Riu&Bro(2004)BackgroundFluorescenceLF-NMR2ndorderAdvantageAlternativesUncertaintySummarySecondorderprediction

SecondorderadvantagePARAFACPLSCatecholHydroquinoneRinnan,Riu&Bro(2004)BackgroundFluorescenceLF-NMR2ndorderAdvantageAlternativesUncertaintySummaryEEMNewsamplesEEMCalibrationsetSecondorderprediction

SecondorderadvantageRinnan,Riu&Bro(2004)BackgroundFluorescenceLF-NMR2ndorderAdvantageAlternativesUncertaintySummarySecondorderprediction

Alternatives=ABCCalibrationNewsamples0ABCRinnan,Riu&Bro(2004)BackgroundFluorescenceLF-NMR2ndorderAdvantageAlternativesUncertaintySummarySOP–ExampleAllsimulateddata3or4analytesincalibrationset3interferentsDifferentkindofoverlapbetweenanalytesandinterferentsFourdifferentnoiselevels7,4,3and2samplesinthecalibrationsetOneorseveralsamplesinthetestset10differentnoiseadditions10replicatesRinnan,Riu&Bro(2004)BackgroundFluorescenceLF-NMR2ndorderAdvantageAlternativesUncertaintySummarySOP–Ex:ResultsAnalyzedbyANOVAandPCATwoverybadmethodsTwogoodmethods

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论