版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京农业大学附属中学高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.直线l过点且与双曲线仅有一个公共点,这样的直线有(
)A.1条
B.2条
C.3条
D.4条参考答案:C略2.设F1,F2是椭圆=1的左、右两个焦点,若椭圆上满足PF1⊥PF2的点P有且只有两个,则离心率e的值为(
)
A.
B.
C.
D.参考答案:C略3.设函数f(x)=xm+ax的导函数f′(x)=2x+1,则数列{}(n∈N*)的前n项和是()A. B. C. D.参考答案:A【考点】数列的求和;导数的运算.【专题】计算题.【分析】函数f(x)=xm+ax的导函数f′(x)=2x+1,先求原函数的导数,两个导数进行比较即可求出m,a,然后利用裂项法求出的前n项和,即可.【解答】解:f′(x)=mxm﹣1+a=2x+1,∴a=1,m=2,∴f(x)=x(x+1),==﹣,用裂项法求和得Sn=.故选A【点评】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项法的应用,是好题,常考题,基础题.4.已知椭圆+=1上的一点M到焦点F1的距离为2,N是MF1的中点,O为原点,则|ON|等于()A.2 B.4 C.8 D.参考答案:B【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】首先根据椭圆的定义求出MF2=8的值,进一步利用三角形的中位线求的结果.【解答】解:根据椭圆的定义得:MF2=8,由于△MF2F1中N、O是MF1、F1F2的中点,根据中位线定理得:|ON|=4,故选:B.【点评】本题考查的知识点:椭圆的定义,椭圆的方程中量的关系,三角形中位线定理.5.方程x2+x+n=0(n∈(0,1))有实根的概率为 ().参考答案:C略6.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法参考答案:B【考点】分层抽样方法;系统抽样方法.【专题】应用题.【分析】此题为抽样方法的选取问题.当总体中个体较少时宜采用简单随机抽样法;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较多时,宜采用系统抽样.【解答】解:依据题意,第①项调查中,总体中的个体差异较大,应采用分层抽样法;第②项调查总体中个体较少,应采用简单随机抽样法.故选B.【点评】本题考查随机抽样知识,属基本题型、基本概念的考查.7.已知直线y=-x+m是曲线y=x2-3lnx的一条切线,则m的值为()A.0B.2C.1D.3参考答案:B8.设函数,则有() A.f(x)是奇函数, B.f(x)是奇函数,y=bx C.f(x)是偶函数 D.f(x)是偶函数, 参考答案:C【考点】函数奇偶性的判断. 【专题】函数的性质及应用. 【分析】先用定义判断函数的奇偶性,再求f(),找出其与f(x)的关系即可得到答案. 【解答】解:函数f(x)的定义域为R,关于原点对称. 又f(﹣x)===f(x),所以f(x)为偶函数. 而f()===﹣=﹣f(x), 故选C. 【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法. 9.已知两圆相交于点,两圆圆心都在直线上,则的值等于(
)A.-1
B.2
C.3
D.0参考答案:C10.下列关于回归分析的说法中错误的有(
)个(1).残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高.(2).回归直线一定过样本中心。(3)两个模型中残差平方和越小的模型拟合的效果越好。(4)甲、乙两个模型的分别约为0.88和0.80,则模型乙的拟合效果更好。A.
4
B.
3
C.2
D.1参考答案:C对于(1)残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越低,故(1)错误;对于(2),回归直线一定过样本中心,(2)正确;对于(3),两个模型中残差平方和越小的模型拟合的效果越好,(3)正确;对于(4),越大,拟合效果越好,故(4)错误;故选:C
二、填空题:本大题共7小题,每小题4分,共28分11.设x,y满足约束条件,且的最小值为7,则a=
.参考答案:312.已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且则动点P的轨迹C的方程是
▲
.参考答案:略13.已知直线b∥平面α,平面α∥平面β,则直线b与β的位置关系为
.参考答案:平行或在平面内【考点】空间中直线与平面之间的位置关系.【专题】阅读型.【分析】根据平面与平面平行的性质进行判定,以及直线与平面位置关系的定义进行判定即可.【解答】解:因为平面α∥平面β,而直线b∥平面α则当b在平面β内,原命题成立,若b不在平面β内,则b一定与平面β平行;故答案为:平行或在平面内【点评】本题主要考查了面面平行的性质,以及空间中直线与平面之间的位置关系,同时考查了空间想象能力,属于基础题.14.函数存在与直线平行的切线,则实数的取值范围是________.参考答案:略15.在平面直角坐标系中,设点为圆上的任意一点,点,则线段长度的最小值是___________.参考答案:略16.如图,设是抛物线上一点,且在第一象限.过点作抛物线的切线,交轴于点,过点作轴的垂线,交抛物线于点,此时就称确定了.依此类推,可由确定,.记,。给出下列三个结论:①;②数列为单调递减数列;③对于,,使得.其中所有正确结论的序号为__________。参考答案:①、②、③17.在一个密封的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围是__参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段与轴的交点满足.
(1)求椭圆的标准方程;
(2)⊙是以为直径的圆,一直线与⊙相切,并与椭圆交于不同的两点,当,且满足时,求面积的取值范围.参考答案:解:(1)
∴点M是线段PF2的中点
∴OM是△PF1F2的中位线,
又OM⊥F1F2
∴PF1⊥F1F2∴椭圆的标准方程为=1……………5分
(2)∵圆O与直线l相切
由
∵直线l与椭圆交于两个不同点,,
设,则
,y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=
19.将一颗正方体的骰子先后抛掷2次(每个面朝上等可能),记下向上的点数,求:(1)求两点数之和为5的概率;(2)以第一次向上点数为横坐标,第二次向上的点数为纵坐标的点在圆的内部的概率.参考答案:将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件(1)记“两数之和为5”为事件A,则事件A中含有4个基本事件,所以P(A)=;
答:两数之和为5的概率为.(2)点(x,y)在圆x2+y2=15的内部记为事件C,则C包含8个事件
所以P(C)=.
答:点(x,y)在圆x2+y2=15的内部的概率.20.为了了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合计男生20525女生101525合计302050(Ⅰ)用分层抽样的方法在喜欢打篮球的学生中抽6人,其中男生抽多少人?(Ⅱ)在上述抽取的6人中选2人,求恰有一名女生的概率.参考答案:【考点】CB:古典概型及其概率计算公式;B3:分层抽样方法.【分析】(Ⅰ)根据分层抽样的方法,在喜欢打蓝球的学生中抽6人,先计算了抽取比例,再根据比例即可求出男生应该抽取人数.(Ⅱ)在上述抽取的6名学生中,女生的有2人,男生4人.女生2人记A,B;男生4人为c,d,e,f,列出其一切可能的结果组成的基本事件个数,通过列举得到满足条件事件数,求出概率.【解答】解:(Ⅰ)在喜欢打蓝球的学生中抽6人,则抽取比例为,∴男生应该抽取20×=4人.(Ⅱ)在上述抽取的6名学生中,女生有2人,男生4人.女生2人记A,B;男生4人为c,d,e,f,则从6名学生任取2名的所有情况为:(A,B)、(A,c)、(A,d)、(A,e)、(A,f)、(B,c)、(B,d)、(B,e)、(B,f)、(c,d)、(c,e)、(c,f)、(d,e)、(d,f)、(e,f)共15种情况,其中恰有1名女生情况有:(A,c)、(A,d)、(A,e)、(A,f)、(B,c)、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024三个小孩抚养权协议及共同财产分割合同6篇
- 2025年服装机械项目申请报告模板
- 2024-2025学年新疆维吾尔阿勒泰地区数学三上期末统考模拟试题含解析
- 2024-2025学年武功县数学三年级第一学期期末联考试题含解析
- 去工厂实习报告模板十篇
- 2024年消防喷淋安装施工总承包合同文件
- 超市的实习报告四篇
- 2025年伺服系统项目申请报告模稿
- 2025年咖啡机项目规划申请报告
- 2024年度水电供应专用合同合同一
- 统编版(2024)道德与法治七年级上册:第二单元《成长的时空》第4-7课教案(8课时)
- 《国珍产品介绍》
- 《络筒生产与工艺设计》课件-6.有梭织机生产与工艺设计
- 为思维而教心得体会.文档
- 深度学习入门(基于Python的理论与实现)
- 学前教育普及普惠督导评估内容和标准量化评分表
- 2024年高考英语词汇表-带音标
- 垫底辣妹教育学思考(3篇模板)
- 框架结构设计国内外研究现状
- 智研咨询-物业服务行业市场调查、产业链全景、需求规模预测报告(2024版)
- 湖北省随州市曾都区2023-2024学年九年级上学期期末考试英语试题
评论
0/150
提交评论