版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡阳市曲潭中学2021-2022学年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,三个命题①;②;③;正确命题的个数是A.0
B.1
C.2
D.3参考答案:D2.是R上奇函数,对任意实数x都有,当时,,则
(
)A.-1 B.1 C.0 D.2参考答案:C【分析】由,得函数f(x)为周期为3的周期函数,据此可得f(2019)=f(0+673×3)=f(0),f(2018)=f(﹣1+3×673)=f(﹣1),结合函数的奇偶性以及解析式可得f(0)与f(1)的值,计算可得f(2018)+f(2019)答案.【详解】根据题意,对任意实数x都有,则,即,所以函数f(x)为周期为3的周期函数,则f(2019)=f(0+673×3)=f(0),f(2018)=f(﹣1+3×673)=f(﹣1),又由f(x)是R上奇函数,则f(0)=0,且时,f(x)=log2(2x﹣1),则f(1)=log2(1)=0,则f(2018)+f(2019)=f(0)+f(﹣1)=f(0)﹣f(1)=0﹣0=0;故选:C.【点睛】本题考查函数的奇偶性与周期性的应用,注意分析函数的周期性,属于中档题.3.下列说法不正确的是(
)A.空间中一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D.过一条直线有且只有一个平面与已知平面垂直.参考答案:A略4.设是圆上的动点,是直线上的动点,则的最小值为()A.6 B.4 C.3 D.2参考答案:B5.当时,不等式成立,则此不等式的解集为() A.
B.C. D.参考答案:B略6.空间直角坐标系中,点M(2,5,8)关于xOy平面对称的点N的坐标为()A.(﹣2,5,8) B.(2,﹣5,8) C.(2,5,﹣8) D.(﹣2,﹣5,8)参考答案:C【考点】空间中的点的坐标.【分析】根据关于平面xoy对称的点的规律:横坐标、纵坐标保持不变,第三坐标变为它的相反数,即可求得答案.【解答】解:由题意,关于平面xoy对称的点横坐标、纵坐标保持不变,第三坐标变为它的相反数,从而有点M(2,5,8)关于平面xoy对称的点的坐标为(2,5,﹣8).故选:C.7.文科)已知平面平面,和是夹在、间的两条线段,,直线与成角,则线段的最小值是
(
)A.
B.
C.
D.
参考答案:A略8.已知函数f(x)=,则方程f(x)=ax恰有两个不同实数根时,实数a的取值范围是()(注:e为自然对数的底数) A.(0,) B.[,] C.(0,) D.[,e]参考答案:B【考点】分段函数的应用. 【专题】函数的性质及应用. 【分析】由题意,方程f(x)=ax恰有两个不同实数根,等价于y=f(x)与y=ax有2个交点,又a表示直线y=ax的斜率,求出a的取值范围. 【解答】解:∵方程f(x)=ax恰有两个不同实数根, ∴y=f(x)与y=ax有2个交点, 又∵a表示直线y=ax的斜率, ∴y′=, 设切点为(x0,y0),k=, ∴切线方程为y﹣y0=(x﹣x0), 而切线过原点,∴y0=1,x0=e,k=, ∴直线l1的斜率为, 又∵直线l2与y=x+1平行, ∴直线l2的斜率为, ∴实数a的取值范围是[,). 故选:B. 【点评】本题考查了函数的图象与性质的应用问题,解题时应结合图象,以及函数与方程的关系,进行解答,是易错题. 9.正四棱柱中,,则异面直线所成角的余弦值为()A.
B.
C.
D.参考答案:D10.从10个学生中挑选若干人组成一组,如果必含其中某人的组合数等于必不含某人的组合数,则这样的一个组合的人数有(
)
A.4个B.5个C.6个D.7个参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.空间向量,,且,则
.参考答案:312.关于x的不等式的解集是R,求实数k的取值范围是_______.参考答案:【分析】利用判别式△<0求出实数k的取值范围.【详解】关于x的不等式的解集为R,∴△=k2-4×9<0,解得∴实数k的取值范围为.【点睛】本题考查了一元二次不等式恒成立问题,是基础题.13.已知,则xy的最大值为____.参考答案:【分析】由基本不等式xy即可求解【详解】解:∵x,y均为正实数,x+y=3,则xy,则x=y=时,xy的最大值是.故答案为:.【点睛】本题主要考查了基本不等式在求解最值中的应用,解题的关键是应用条件的配凑.14.抛物线上的点到抛物线准线距离为,到直线的距离为,则的最小值是________.参考答案:略15.有两个等差数列2,6,10,…,190及2,8,14,…,200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的前10项之和为.参考答案:560【考点】等差数列的通项公式;等差数列的前n项和.【分析】数列{an}与数列{bn}首项a1=b1=2,由这两个等差数列的公共项也是一个等差数列{cn},首项c1=2,公差为4与6的最小公倍数,d=12,由此能求出这个新数列的前10项之和.【解答】解:等差数列2,6,10,…,190的通项为an=2+(n﹣1)?4=4n﹣2,等差数列2,8,10,14,…,200的通项为bn=2+(n﹣1)?6=6n﹣4,数列{an}与数列{bn}首项a1=b1=2,由这两个等差数列的公共项也是一个等差数列{cn},首项c1=2,公差为4与6的最小公倍数,d=12,∴cn=2+(n﹣1)?12=12n﹣10,Sn==,∴=560.故答案为:560.16.在平面直角坐标系xOy中,设D是由不等式组表示的区域,E是到原点的距离不大于1的点构成的区域,向E中随机投一点,则所投点落在D中的概率是_______.参考答案:17.过点P(3,1)作直线l将圆C:x2+y2﹣4x﹣5=0分成两部分,当这两部分面积之差最小时,直线l的方程是
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(1)已知椭圆的长轴长为10,离心率为,求椭圆的标准方程;(2)求与双曲线﹣=1有相同焦点,且经过点(3,2)的双曲线的标准方程.参考答案:【考点】双曲线的简单性质;椭圆的简单性质.【专题】综合题;方程思想;综合法;圆锥曲线的定义、性质与方程.【分析】(1)利用椭圆的长轴长为10,离心率为,求出几何量,即可求椭圆的标准方程;(2)点(3,2)代入﹣=1(a>0,b>0),可得﹣=1,利用a2+b2=20,求出双曲线的标准方程.【解答】解:(1)∵椭圆的长轴长为10,离心率为,∴2a=10,=,∴a=b,b=3,c=4,∴椭圆的标准方程为+=1或=1;(2)由题意双曲线的焦点坐标为(±2,0),c=±2,∴点(3,2)代入﹣=1(a>0,b>0),可得﹣=1,∵a2+b2=20,∴a2=12,b2=8,∴双曲线的标准方程=1.【点评】本题考查椭圆、双曲线的标准方程,考查学生的计算能力,属于中档题.19.现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.参考答案:【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式;相互独立事件的概率乘法公式.【分析】(I)记:“该射手恰好命中一次”为事件A,“该射手射击甲靶命中”为事件B,“该射手第一次射击乙靶命中”为事件C,“该射手第二次射击乙靶命中”为事件D,由于A=B++,根据事件的独立性和互斥性可求出所求;(II)根据题意,X的所有可能取值为0,1,2,3,4,根据事件的对立性和互斥性可得相应的概率,得到分布列,最后利用数学期望公式解之即可.【解答】解:(I)记:“该射手恰好命中一次”为事件A,“该射手射击甲靶命中”为事件B,“该射手第一次射击乙靶命中”为事件C,“该射手第二次射击乙靶命中”为事件D由题意知P(B)=,P(C)=P(D)=由于A=B++根据事件的独立性和互斥性得P(A)=P(B)+P()+P()=P(B)P()P()+P()P(C)P()+P()P()P(D)=×(1﹣)×(1﹣)+(1﹣)××(1﹣)+(1﹣)×(1﹣)×=(II)根据题意,X的所有可能取值为0,1,2,3,4,5根据事件的对立性和互斥性得P(X=0)=P()=(1﹣)×(1﹣)×(1﹣)=P(X=1)=P(B)=×(1﹣)×(1﹣)=P(X=2)=P(+)=P()+P()=(1﹣)××(1﹣)+(1﹣)×(1﹣)×=P(X=3)=P(BC)+P(BD)=××(1﹣)+×(1﹣)×=P(X=4)=P()=(1﹣)××=P(X=5)=P(BCD)=××=故X的分布列为X012345P所以E(X)=0×+1×+2×+3×+4×+5×=【点评】本题主要考查了离散型随机变量的期望,以及分布列和事件的对立性和互斥性,同时考查了计算能力和分析问题的能力,属于中档题.20.(12分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点P(4,-).(1)求双曲线的方程.(2)若点M(3,m)在双曲线上,求证:·=0.(3)求△F1MF2的面积.参考答案:(1)∵e=,∴可设双曲线方程为x2-y2=λ(λ≠0).∵过点P(4,-),∴16-10=λ,即λ=6.∴双曲线方程为x2-y2=6.(2)方法一:由(1)可知,双曲线中a=b=,∴c=2,∴F1(-2,0),F2(2,0).∴=,=,·==-.∵点M(3,m)在双曲线上,∴9-m2=6,m2=3.故·=-1,∴MF1⊥MF2.∴·=0.方法二:∵=(-3-2,-m),=(2-3,-m),∴·=(3+2)×(3-2)+m2=-3+m2.∴9-m2=6,即m2-3=0.∴·=0.(3)△F1MF2的底|F1F2|=4,△F1MF2的边F1F2的高h=|m|=,∴=6.∵M(3,m)在双曲线上,21.设△ABC的三边长分别为a,b,c,已知a=3,c=2,B=120°.(1)求边b的长;(2)求△ABC的面积.参考答案:【考点】余弦定理;正弦定理.【专题】解三角形.【分析】(1)利用余弦定理列出关系式,把a,c,cosB的值的求出b的值即可;(2)由a,c,sinB的值,利用三角形面积公式求出三角形ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮电子版劳务合同
- 驳回民事裁定申请书
- 北京市政府劳动合同续签办法
- 肿瘤放射治疗体位固定技术
- 广东省仲元中学2024-2025学年九年级上学期期中考试化学试题(含答案)
- 调研活动心得体会
- 突发事件应急
- 双头应急灯相关行业投资方案范本
- 石油钻采设备相关项目投资计划书范本
- 电控多瓶采水器相关行业投资规划报告
- GB∕T 17268-2020 工业用非重复充装焊接钢瓶
- 苏教版二年级数学上册《认识线段》课件(市级赛课一等奖)
- 幼儿园:中班美术活动《柿柿如意》
- 输电线路初步设计评审要点课件
- (完整word版)小餐饮经营食品安全管理制度
- 产后尿潴留的护理个案课件
- 装配式混凝土结构部件吊装监理细则
- 交通事故伤残鉴定知识培训及案例课件
- 地铁站装饰施工组织设计(181页)
- 动火作业及动火工作票管理规定
- 变电站综合自动化电子教案
评论
0/150
提交评论