福建省福州市闽侯第五中学2021年高一数学理下学期期末试卷含解析_第1页
福建省福州市闽侯第五中学2021年高一数学理下学期期末试卷含解析_第2页
福建省福州市闽侯第五中学2021年高一数学理下学期期末试卷含解析_第3页
福建省福州市闽侯第五中学2021年高一数学理下学期期末试卷含解析_第4页
福建省福州市闽侯第五中学2021年高一数学理下学期期末试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省福州市闽侯第五中学2021年高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.方程的解的个数是A.1

B.2

C.3

D.4参考答案:B2.平面向量与的夹角为60°,=(2,0),||=1,则|+2|=()A. B. C.12 D.参考答案:B【考点】9R:平面向量数量积的运算.【分析】原式利用二次根式性质化简,再利用完全平方公式展开,利用平面向量的数量积运算法则计算即可得到结果.【解答】解:∵平面向量与的夹角为60°,=(2,0),||=1,∴|+2|=====2,故选:B.3.函数与且在同一坐标系中的图象只可能是(

)参考答案:C4.计算的结果为

(A)-5

(B)

(C)5

(D)参考答案:B5.如果先将函数的图象向左平移个单位长度,再将所得图象向上平移1个单位长度,那么最后所得图象对应的函数解析式为(

)A. B.C. D.参考答案:B【分析】利用三角函数图象的平移变换分析解答即得解.【详解】先将函数的图象向左平移个单位长度,得到,再将所得图象向上平移1个单位长度得到.故选:【点睛】本题主要考查三角函数的平移变换的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.6.若{an}是等差数列,则下列数列中也成等差数列的是(

)A. B. C. D.参考答案:C【分析】根据等差数列的定义,只需任意相邻的后一项与前一项的差为定值即可.【详解】A:=(an+an+1)(an+1﹣an)=d[2a1+(2n﹣1)d],与n有关系,因此不是等差数列.B:==与n有关系,因此不是等差数列.C:3an+1﹣3an=3(an+1﹣an)=3d为常数,仍然为等差数列;D:当数列{an}的首项为正数、公差为负数时,{|an|}不是等差数列;故选:C【点睛】本题考查了等差数列的定义及其通项公式,考查了推理能力与计算能力,属于基础题.7.已知函数的一条对称轴为直线,一个对称中心为点,则有(

)A.最小值2 B.最大值2 C.最小值1 D.最大值1参考答案:A【分析】将代入余弦函数对称轴方程,可以算出关于的一个方程,再将代入余弦函数的对称中心方程,可求出另一个关于的一个方程,综合两个等式可以选出最终答案.【详解】由满足余弦函数对称轴方程可知,再由满足对称中心方程可知,综合可知的最小值为2,故选A.【点睛】正弦函数的对称轴方程满足,对称中心满足;余弦函数的对称轴方程满足,对称中心满足;解题时一定要注意这个条件,缩小范围.8.当时,函数最小值为

A.

B.

C.

D.0参考答案:B9.一个高为H,水量为V的鱼缸的轴截面如图,其底部有一个洞,满缸水从洞中流出,如果水深为h时水的体积为v,则函数的大致图象是(

)A

B

C D

参考答案:

D10.如图圆C内切于扇形AOB,,若在扇形AOB内任取一点,则该点在圆C内的概率为(

)A.

B.

C.

D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.集合A={x|≤2x≤,x∈R},B={x|x2﹣2tx+1≤0},若A∩B=A,则实数t的取值范围是

.参考答案:(﹣∞,﹣].【考点】交集及其运算.【分析】首先求出集合A,根据A∩B=A,得到A?B,设f(x)=x2﹣2tx+1,则应满足,求出t的范围即可.【解答】解:A={x|≤2x≤,x∈R}={x|﹣2≤x≤﹣1},B={x|x2﹣2tx+1≤0},因为A∩B=A,所以A?B,设f(x)=x2﹣2tx+1,满足,即,解得t故答案为:(﹣∞,﹣].12.若,则的值是_________参考答案:【分析】直接运用诱导公式即可。【详解】【点睛】本题考查了诱导公式的运用。本题的关键是根据“奇变偶不变,符号看象限”来熟练的使用诱导公式。13.已知点P在角θ的终边上,且θ∈[0,2π),则θ的值为________.参考答案:

14.等腰三角形的顶角的余弦值是,则一个底角的余弦值为

.参考答案:略15.若函数的定义域为A,值域为B,则A∩B=____________。参考答案:[0,2]解:令,∴,解得定义域A=[-4,2];,∴值域B=[0,3]。∴A∩B=[0,2]。

16.

.参考答案:17.已知f(x)=,则f[f(-2)]=________________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知{an}是等差数列,{bn}是等比数列,且,,,.(1)求{an}的通项公式;(2)设,求数列{cn}的前n项和.参考答案:(1);(2)【分析】(1)设等差数列的公差为,等比数列的公比为,运用通项公式,可得,进而得到所求通项公式;(2)由(1)求得,运用等差数列和等比数列的求和公式,即可得到数列和.【详解】(1)设等差数列的公差为,等比数列的公比为,因为,可得,所以,又由,所以,所以数列的通项公式为.(2)由题意知,则数列的前项和为.【点睛】本题主要考查了等差数列和等比数列的通项公式和求和公式的运用,以及数列的分组求和,其中解答中熟记等差、等比数列的通项公式和前n项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19.已知定义在上的函数,最大值与最小值的差为4,相邻两个最低点之间距离为,函数图象所有对称中心都在图象的对称轴上.(1)求的表达式;(2)若,求的值;(3)设,,,若恒成立,求实数的取值范围.参考答案:20.已知函数.(1)求函数的最小正周期;(2)求函数在区间上的最大值和最小值.参考答案:(Ⅰ)(Ⅱ)最大值为,最小值为-1试题分析:(1)利用正弦函数的两角和与差的公式、二倍角的余弦公式与辅助角公式将化为,利用周期公式即可求得函数的最小正周期;(2)可分析得到函数在区间上是增函数,在区间上是减函数,从而可求得在区间上的最大值和最小值.试题解析:(1)f(x)=sin2x·cos+cos2x·sin+sin2x·cos-cos2x·sin+cos2x=sin2x+cos2x=sin.

所以,f(x)的最小正周期T==π.

(2)因为f(x)在区间上是增函数,在区间上是减函数.又,故函数f(x)在区间上的最大值为,最小值为-1.21.某算法的程序框图如图所示,其中输入的变量J在1,2,3,…,30这30个整数中等可能随机产生.(1)分别求出(按程序框图正确编程运行时)输出y的值为i的概率Pi(i=1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数,下面是甲、乙所作频数统计表的部分数据:甲的频数统计表(部分)运行次数输出y=1的频数输出y=2的频数输出y=3的频数3016113…………2000967783250乙的频数统计表(部分)运行次数输出y=1的频数输出y=2的频数输出y=3的频数3013134…………2000998803199当n=2000时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断甲、乙中谁所编写的程序符合算法要求的可能性较大.参考答案:见解析【考点】设计程序框图解决实际问题;离散型随机变量的期望与方差.【专题】计算题;图表型;概率与统计;算法和程序框图.【分析】(1)由题意可得,变量x是从1,2,3,…30这30个整数中可能随机产生的一个数,共有30中结果,当变量x从1,3,5,7,9,11,13,15,17,19,21,23,25,27,29这15个整数中产生时,输出y的值为1,所以P1=,当变量x从2,4,6,8,12,14,16,18,22,24,26,28这12个整数中产生时,输出原点值为2,所以P2=,当变量x从10,20,30这3个整数中产生时,输出y的值为3,所以P3=.…(2)当n=2000时,列出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率的表格,再比较频率趋势与概率,即可得解.【解答】(本题满分10分)解:(1)由题意可得,变量x是从1,2,3,…30这30个整数中可能随机产生的一个数,共有30中结果,当变量x从1,3,5,7,9,11,13,15,17,19,21,23,25,27,29这15个整数中产生时,输出y的值为1,所以P1=,当变量x从2,4,6,8,12,14,16,18,22,24,26,28这12个整数中产生时,输出原点值为2,所以P2=,当变量x从10,20,30这3个整数中产生时,输出y的值为3,所以P3=.…6分(2)当n=2000时,甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率如下,n=2000输出y=1的频数输出y=2的频数输出y=3的频数甲乙比较频率可得,乙所编程序符合算法要求的可能性较大.…10分【点评】本题综合考查程序框图、古典概型及其概率计算公式等基础知识,考查运算求解能力,属于基础题.22.在△ABC中,内角A,B,C满足且.(1)求角A的大小;(2)若内角A,B,C的对边分别为a,b,c,且a=14,求边BC上的中线AD的长.参考答案:【考点】HR:余弦定理;HP:正弦定理.【分析】(1)由已知利用同角三角函数基本关系式可求sinB,代入已知等式可得3sinA=7sinC,由三角函数恒等变换的应用可求tanA,结合范围0<A<π,可求A的值.(2)由(1)可求sinA,sinC,由正弦定理解得c,b的值,进而在△ABD中,由余弦定理可求AD的值.【解答】解:(1)在△ABC中,因为,所以.代入,化简可得3sinA=7sinC.因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论