安徽省亳州市利辛县胡集中学2021-2022学年高一数学理下学期期末试卷含解析_第1页
安徽省亳州市利辛县胡集中学2021-2022学年高一数学理下学期期末试卷含解析_第2页
安徽省亳州市利辛县胡集中学2021-2022学年高一数学理下学期期末试卷含解析_第3页
安徽省亳州市利辛县胡集中学2021-2022学年高一数学理下学期期末试卷含解析_第4页
安徽省亳州市利辛县胡集中学2021-2022学年高一数学理下学期期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省亳州市利辛县胡集中学2021-2022学年高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1..2019年是新中国成立70周年,某学校为庆祝新中国成立70周年,举办了“我和我的祖国”演讲比赛,某选手的6个得分去掉一个最高分,去掉一个最低分,4个剩余分数的平均分为91.现场制作的6个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示,则4个剩余分数的方差为(

)A.1 B. C.4 D.6参考答案:B【分析】先分析得到x≥3,再确定剩下的四个数并求它们的方差得解.【详解】数据93,90,90,91的平均数为91,由题意可得,所以4个剩余分数为93,90,90,91,则4个剩余分数的方差为.故选:B【点睛】本题主要考查平均数和方差的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.已知函数(且),若,则(

)A.0

B.

C.

D.1参考答案:C考点:奇函数的性质及对数运算性质的综合运用.【易错点晴】函数的奇偶性是函数的重要性质之一,也是中学数学中的重要知识点和高考命题的重要内容和考点.本题以含参数函数的解析式为背景,考查的是指数对数运算的性质及奇函数定义的运用.求解时先判断函数的奇偶性,运用奇函数的定义可得,从而使得问题获解.3.如图,已知四面体ABCD为正四面体,分别是AD,BC中点.若用一个与直线EF垂直,且与四面体的每一个面都相交的平面去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为(

).A.1 B. C. D.2参考答案:A【分析】通过补体,在正方体内利用截面为平行四边形,有,进而利用基本不等式可得解.【详解】补成正方体,如图.∴截面为平行四边形,可得,又且可得当且仅当时取等号,选A.【点睛】本题主要考查了线面的位置关系,截面问题,考查了空间想象力及基本不等式的应用,属于难题.4.sin2cos3tan4的值

()

(A)小于0

(B)大于0

(C)等于0

(D)不存在参考答案:A5.=

A.-1

B.0

C.1

D.2参考答案:A略6.下列叙述随机事件的频率与概率的关系中哪个是正确的()A.频率就是概率

B.频率是客观存在的,与试验次数无关C.概率是随机的,在试验前不能确定

D.随着试验次数的增加,频率一般会越来越接近概率参考答案:D7.函数的图象是(

)A B

C

D参考答案:C8.函数的单调递增区间为(

)A.(-∞,0] B.[0,+∞)C.(0,+∞) D.(-∞,+∞)参考答案:A【分析】由解析式知函数图像为开口向下的抛物线,且对称轴为轴,故可得出其单调增区间.【详解】∵函数,∴函数图像为开口向下的抛物线,且其对称轴为轴∴函数的单调增区间为.故选:A.【点睛】本题考查了一元二次函数的单调区间,掌握一元二次函数的对称轴是解题的关键,属于基础题.9.若方程表示一个圆,则m的取值范围是(

)A. B. C. D.参考答案:C【分析】化为标准方程,根据半径必须大于零求解.【详解】表示一个圆,所以,解得故选C.【点睛】本题考查圆的一般方程与标准方程的互化,属于基础题.

10.在区间之间随机抽取一个数,则满足的概率为(

)A.

B.

C.

D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.如右上图所示,程序框图的输出值x=_____.参考答案:12略12.在圆内,过点的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为

.参考答案:13.等差数列{an}中,若a9+a10=a,a29+a30=b,则a99+a100=

参考答案:b_a略14.若变量x,y满足约束条件,则的最小值为

.参考答案:

-6

15.已知函数的定义域为实数集,满足(是的非空真子集),若在上有两个非空真子集,且,则的值域为__________.参考答案:试题分析:当时,,所以,;当时,;当时,;故,即值域为,故答案为.考点:函数的值域及新定义问题.16.函数y=定义域是______________________。参考答案:略17.某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查。现将800名学生从1到800进行编号,求得间隔数为16。在1~16中随机抽取一个数,如果抽到的是7,则从49~64这16个数中应取的是

参考答案:55略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(14分)(2015春?深圳期末)设向量=(a,cos2x),=(1+sin2x,1),x∈R,函数f(x)=?cos∠AOB(Ⅰ)当y=f(x)的图象经过点(,2)时,求实数a的值;(Ⅱ)在(Ⅰ)的条件下,若x为锐角,当sin2x=sin(+α)?sin(﹣α)+时,求△OAB的面积;(Ⅲ)在(Ⅰ)的条件下,记函数h(x)=f(x+t)(其中实数t为常数,且0<t<π).若h(x)是偶函数,求t的值.参考答案:考点:两角和与差的正弦函数;平面向量数量积的运算.

专题:三角函数的求值.分析:(1)由题意可得f(x)=?=a(1+sin2x)+cos2x,代点可得a值;(2)由三角函数公式化简可得sin2x=,由x的范围可得x值,可得和的坐标,由夹角公式可得∠AOB的余弦值,进而可得正弦值,由三角形的面积公式可得;(3)可得h(x)=f(x+t)=1+sin(2x+2t+),由偶函数可得2t+=kπ+,结合t的范围可得t值.解答:解:(1)由题意可得f(x)=?cos∠AOB=?=a(1+sin2x)+cos2x∵图象经过点(,2),∴a(1+sin)+cos=2a=2,∴a=1;(2)∵sin2x=sin(+α)?sin(﹣α)+,∴sin2x=sin(+α)cos(+α)+=sin(+2α)+=cos2α+=,∵x为锐角,∴x=,∴=(1,0),=(2,1),∴cos∠AOB=,∴sin∠AOB=,∴△OAB的面积S=×=;(3)可得f(x)=1+sin2x+cos2x=1+sin(2x+),∴h(x)=f(x+t)=1+sin(2x+2t+),∵h(x)是偶函数,∴2t+=kπ+,∴t=+,k∈Z,又∵0<t<π,∴t=或.点评:本题考查两角和与差的三角函数公式,涉及向量的运算和三角形的面积公式,属中档题.19.(13分)已知函数y=cos2x+sinxcosx+1,x∈R.(1)求函数的最大值,及当函数y取得最大值时自变量x的集合;(2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?

参考答案:(1)y最大值时,x的集合为{x|x=;+k,k∈Z}(2)y=cos2x+sinxcosx+1(1)y=cos2x+sinxcosx+1=(2cos2x-1)++(2sinxcosx)+1=cos2x+sin2x+=(cos2x·sin+sin2x·cos)+=sin(2x+)+y取得最大值必须且只需2x+=+2k,k∈Z,即x=+k,k∈Z.所以当函数y取得最大值时,自变量x的集合为{x|x=+k,k∈Z}.(2)将函数y=sinx依次进行如下变换:①把函数y=sinx的图象向左平移,得到函数y=sin(x+)的图象;②把得到的图象上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图象;③把得到的图象上各点纵坐标缩短到原来的倍(横坐标不变),得到函数y=sin(2x+)的图象;④把得到的图象向上平移个单位长度,得到函数y=sin(2x+)+的图象;综上得到函数y=cos2x+sinxcosx+1的图象.

20.已知定义域为的函数是奇函数.(1)求的值;(2)判断函数的单调性;(3)若对任意的,不等式恒成立,求的取值范围.参考答案:(1)因为在定义域为上是奇函数,所以=0,即(2)由(1)知,设则因为函数y=2在R上是增函数且∴>0又>0∴>0即∴在上为减函数.(3)因是奇函数,从而不等式:

等价于,因为减函数,由上式推得:.即对一切有:,

从而判别式

略21.已知f(x)=ax2﹣2x+2,a∈R(1)已知h(10x)=f(x)+x+1,求h(x)的解析式;(2)若f(x)>0在x∈[1,2]恒成立,求a的取值范围;(3)设函数F(x)=|f(x)|,若对任意x1,x2∈[1,2],且x1≠x2,满足>0,求实数a的取值范围.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(1)令10x=t,得:x=lgt,从而求出h(x)的解析式即可;(2)分离此时a,得到恒成立,根据二次函数的性质求出a的范围即可;(3)通过讨论a的范围求出F(x)的单调性,从而进一步确定a的范围即可.【解答】解:(1)令10x=t即x=lgt,由h(10x)=ax2﹣x+3得h(t)=alg2t﹣lgt+3即h(x)=alg2x﹣lgx+3(2)由题意得:ax2﹣2x+2>0即恒成立,,当x=2时,所以a得取值范围为(3)由题意得F(x)=|f(x)|在x∈[1,2]单调递增,①当a<0时,f(x)=ax2﹣2x+2,对称轴为又因为f(0)>0且f(x)在x∈[1,2]单调递减,且f(1)=a<0,所以F(x)=|f(x)|在x∈[1,2]单调递增.②当a=0时,f(x)=﹣2x+2,f(x)在x∈[1,2]单调递减,且f(1)=0,所以F(x)=|f(x)|在x∈[1,2]单调递增;③当时,f(x)=ax2﹣2x+2,对称轴为,所以f(x)在x∈[1,2]单调递减,要使F(x)=|f(x)|在x∈[1,2]单调递增.f(1)=a<0不符合,舍去;④当时,f(x)=ax2﹣2x+2,对称轴为,可知F(x)=|f(x)|在x∈[1,2]不单调.⑤当a≥1时,f(x)=ax2﹣2x+2,对称轴为所以f(x)在x∈[1,2]单调递增,f(1)=a>0要使F(x)=|f(x)|在x∈[1,2]单调递增.故a≥1;综上所述,a的取值范围为(﹣∞,0]∪[1,+∞)22.已知函数f(x)=2sinxcosx+2cos2x﹣1(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[﹣,]上的最大值和最小值.参考答案:【分析】(Ⅰ)先逆用二倍角公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论