版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市中国科大附属中学高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.抛物线y=4x2的焦点坐标是()A.(1,0) B.(0,1) C.() D.()参考答案:D【考点】抛物线的简单性质.【分析】将抛物线化简得x2=y,解出,结合抛物线标准方程的形式,即得所求焦点坐标.【解答】解:∵抛物线的方程为y=4x2,即x2=y∴2p=,解得因此抛物线y=4x2的焦点坐标是(0,).故选:D2.由直线y=2x及曲线y=3-x2围成的封闭图形的面积为()A.2
B.9-2
C.
D.参考答案:D注意到直线y=2x与曲线y=3-x2的交点A,B的坐标分别是(-3,-6),(1,2),因此结选D.3.已知F为抛物线C:y2=4x的焦点,点E在C的准线上,且在x轴上方,线段EF的垂直平分线与C的准线交于点Q(﹣1,),与C交于点P,则点P的坐标为()A.(1,2) B.(2,2) C.(3,2) D.(4,4)参考答案:D【考点】抛物线的简单性质.【分析】由抛物线方程求出焦点坐标,设出E的坐标(﹣1,m),利用EF和QP垂直求得m的值,则QP的方程可求,联立QP的方程与抛物线方程即可求出P的坐标.【解答】解:如图,由抛物线方程为y2=4x,得F(1,0),设E(﹣1,m)(m>0),则EF中点为G(0,),,又Q(﹣1,),∴,则,解得:m=4.∴,则QG所在直线方程为y﹣=,即x﹣2y+4=0.联立,得,即P(4,4),故选:D.4.等差数列中,已知,,使得的最小正整数n为 A.7 B.8 C.9 D.10参考答案:B5.以椭圆的右焦点为圆心的圆经过原点,且被椭圆的右准线分成弧长为的两段弧,那么该椭圆的离心率等于(
)A.
B.
C.
D.
参考答案:B6.曲线与两坐标轴所围成图形的面积为
(
)
A.
B.
C.
D.参考答案:C7.已知等差数列和等比数列,它们的首项是一个相等的正数,且第3项也是相等的正数,则与的大小关系为(
)A.
B.
C.
D.参考答案:B略8.已知,且,则x+y+z的最小值为(
)A.12
B.10
C.9
D.8参考答案:C9.已知三条不同直线,两个不同平面,有下列命题:①,,∥,∥,则∥②,,,,则③,,,,则④∥,,则∥其中正确的命题是(
)A.①③B.②④C.③D.①②④参考答案:C略10.双曲线的渐近线方程为()A.B.C.D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.过抛物线y=f(x)上一点A(1,0)的切线的倾斜角为45°则f′(1)=
.参考答案:1【考点】6H:利用导数研究曲线上某点切线方程;63:导数的运算.【分析】确定点A即为切点,再根据函数的导数就是函数在此点的切线的斜率,利用斜率与倾斜角的关系,从而来求出f′(1).【解答】解:∵点A(1,0)满足抛物线,∴点A即为切点.∵切线的倾斜角为45°,∴y′=f′(1)=tan45°=1.故答案为1.【点评】本题考查函数的导数的几何意义,同时考查了直线的倾斜角和斜率的关系,属于基础题.12.已知函数,在定义域上表示的曲线过原点,且在处的切线斜率均为.有以下命题:①是奇函数;②若在内递减,则的最大值为4;③的最大值为,最小值为,则;④若对,恒成立,则的最大值为2.其中正确命题的序号为 参考答案:①③.13.下面给出的几个命题中:①若平面//平面,是夹在间的线段,若//,则;②是异面直线,是异面直线,则一定是异面直线;③过空间任一点,可以做两条直线和已知平面垂直;④平面//平面,,//,则;⑤若点到三角形三个顶点的距离相等,则点在该三角形所在平面内的射影是该三角形的外心;ks5u⑥是两条异面直线,为空间一点,过总可以作一个平面与之一垂直,与另一个平行。其中正确的命题是
。参考答案:①④⑤14.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么类比得到的结论是________.参考答案:S+S+S=S略15.已知集合A={1,2,3,4},集合B={3,4,5},则A∩B=_______.参考答案:{3,4}.【分析】利用交集的概念及运算可得结果.【详解】,.【点睛】本题考查集合的运算,考查交集的概念与运算,属于基础题.16.已知向量,,满足,,,,,则________.参考答案:12【分析】由得到,根据,,不妨令,,设,由,,求出,进而可求出结果.【详解】因为,所以,又,,不妨令,,设,因为,,所以,解得,所以,因此.故答案为12【点睛】本题主要考查向量的数量积,熟记向量数量积的坐标运算即可,属于常考题型.17.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知射线θ=与曲线(t为参数)相交于A,B两点,则线段AB的中点的直角坐标为________.参考答案:记A(x1,y1),B(x2,y2),将θ=,转化为直角坐标方程为y=x(x≥0),曲线为y=(x-2)2,联立上述两个方程得x2-5x+4=0,∴x1+x2=5,故线段AB的中点坐标为.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分14分)已知椭圆,其左准线为,右准线为,抛物线以坐标原点为顶点,为准线,交于两点.(1)求抛物线的标准方程;(2)求线段的长度.参考答案:(1);(2)1619.设△ABC的内角A,B,C所对的边分别为a,b,c,且acosC+c=b.(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.参考答案:(1)由acosC+c=b得sinAcosC+sinC=sinB.又sinB=sin(A+C)=sinAcosC+cosAsinC,所以sinC=cosAsinC,因为sinC≠0,所以cosA=,又因为0<A<π,所以A=.
5分(2)由正弦定理得b==sinB,c=sinC,l=a+b+c=1+
(sinB+sinC)=1+[sinB+sin(A+B)]=1+2=1+2sin.因为A=,所以B∈,所以B+∈,所以sin∈.故△ABC的周长l的取值范围是(2,3].
12分20.△ABC中,BC=7,AB=3,且=.(1)求AC;
(2)求∠A.参考答案:解:由正弦定理及已知条件有,又所以.
由余弦定理有,即,所以,所以.21.已知f(x)=|x+1|+|x﹣2|(Ⅰ)求f(x)>5的解集;(Ⅱ)若关于x的不等式f(x)<m有解,求实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年河北省职教高考《语文》考前冲刺模拟试题库(附答案)
- 2025年河北石油职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年江西工商职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年江苏护理职业学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2025年梅河口康美职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 山东省济南市高三语文上学期开学考试语文试卷(含答案)
- 专题07 名篇名句默写(讲练)
- 2025年工业研发设计软件市场前景与趋势预测
- 企业劳务外包简单合同范本
- 贷款买房购房合同范本
- 2025年上半年长沙市公安局招考警务辅助人员(500名)易考易错模拟试题(共500题)试卷后附参考答案
- 2025河北邯郸世纪建设投资集团招聘专业技术人才30人高频重点提升(共500题)附带答案详解
- 慈溪高一期末数学试卷
- 《基于新课程标准的初中数学课堂教学评价研究》
- 贵州省黔东南州2024年七年级上学期数学期末考试试卷【附答案】
- 医院廉洁自律承诺书
- 企业招聘技巧培训
- 学校校本课程《英文电影鉴赏》文本
- 华为HCSA-Presales-IT售前认证备考试题及答案
- 重大事故隐患判定标准与相关事故案例培训课件
- 2024年度节后复工建筑施工安全培训交底
评论
0/150
提交评论