版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年山西省临汾市侯马路西学校高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图所示,已知椭圆C:+y2=1的左、右焦点分别为F1,F2,点M与C的焦点不重合,分别延长MF1,MF2到P,Q,使得=,=,D是椭圆C上一点,延长MD到N,若=+,则|PN|+|QN|=()A.10 B.5 C.6 D.3参考答案:A【考点】椭圆的简单性质.【分析】由向量线性运算的几何意义可得,故而DF2∥QN,DF1∥PN,于是,于是=5a.【解答】解:∵,即,∴,∴,又,,∴,,∴,∴DF2∥NQ,DF1∥NP,∴,,∴,根据椭圆的定义,得|DF1|+|DF2|=2a=4,∴,故选A.2.已知向量=(3,4),=(2,-1),如果向量与垂直,则x的值为(
)
A.
B.
C.
D.2参考答案:A略3.设全集R,集合,,则
(
)A.
B.
C.
D.参考答案:B略4.函数y=cosx·tanx的值域是()A.(-1,0)∪(0,1)
B.[-1,1]C.(-1,1)
D.[-1,0]∪(0,1)参考答案:C5.直线的倾斜角为(
)A.
B.
C.
D.参考答案:A6.已知函数(
)A. B.
C.1
D.参考答案:D7.从长度为1,2,3,4,5的五条线段中,任取三条的不同取法共有n种,在这些取法中,以取出的三条线段为边可组成钝角三角形的个数为m,则等于(
)A.
B.
C.
D.参考答案:B8.设向量a,b满足|a|=|b|=1,a·b=-,则|a+2b|=()A.
B.C.
D.参考答案:B9.在△ABC中,SinA=,则A等于(
)。A.60°
B.120°
C.60°或120°
D.30°或150°参考答案:C10.设集合A={4,5,7,9},B={3,4,7,8,9},则集合A∪B中的元素共有
(
)A.3个 B.4个 C.5个 D.6个参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.平面几何里有设:直角三角形ABC的两直角边分别为a,b,斜边上的高为h,则+=拓展到空间:设三棱锥A﹣BCD的三个侧棱两两垂直,其长分别为a,b,c,面BCD上的高为h,则有 .参考答案:=【考点】类比推理.【分析】立体几何中的类比推理主要是基本元素之间的类比:平面?空间,点?点或直线,直线?直线或平面,平面图形?平面图形或立体图形,故本题由平面上的直角三角形中的边与高的关系式类比立体中两两垂直的棱的三棱锥中边与高的关系即可.【解答】解:∵A﹣BCD的三个侧棱两两垂直,∴AB⊥平面BCD.由已知有:CD上的高AE=,h=AO=,∴h2=,即=.故答案为:=.12.是锐二面角的内一点,于点到的距离为,则二面角的平面角大小为
参考答案:60013.已知点A(-4,-5),B(6,-1),则以线段AB为直径的圆的方程
参考答案:14.长方体中,,,,则与所成角的余弦值为
▲
.参考答案:0略15.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,都存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={(x,y)|y=};
②M={(x,y)|y=log2x};③M={(x,y)|y=ex﹣2;
④M={(x,y)|y=sinx+1.其中是“垂直对点集”的序号是.参考答案:③④【考点】点到直线的距离公式.【专题】导数的综合应用.【分析】由题意可得:集合M是“垂直对点集”,即满足:曲线y=f(x)上过任意一点与原点的直线,都存在过另一点与原点的直线与之垂直.【解答】解:由题意可得:集合M是“垂直对点集”,即满足:曲线y=f(x)上过任意一点与原点的直线,都存在过另一点与原点的直线与之垂直.①M={(x,y)|y=},假设集合M是“垂直对点集”,则存在两点,,满足=﹣1,化为=﹣1,无解,因此假设不成立,即集合M不是“垂直对点集”,②M={(x,y)|y=log2x},(x>0),取(1,0),则不存在点(x2,log2x2)(x2>0),满足1×x2+0=0,因此集合M不是“垂直对点集”;③M={(x,y)|y=ex﹣2},结合图象可知:集合M是“垂直对点集”;④M={(x,y)|y=sinx+1,结合图象可知:集合M是“垂直对点集”.综上可得:只有③④是“垂直对点集”.故答案为:③④.【点评】本题考查了新定义“垂直对点集”、直线垂直与斜率的关系,考查了推理能力与计算能力,属于中档题.16.若直线与抛物线的两个交点都在第二象,则k的取值范围是______________.参考答案:(-3,0)17.等比数列的前项和=,则=_______.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分15分)如图,矩形所在的半平面和直角梯形所在的半平面成的二面角,∥,,,,,.(Ⅰ)求证:∥平面;(Ⅱ)在线段上求一点,使锐二面角的余弦值为.参考答案:(Ⅰ)因为∥,平面,所以∥平面,同理∥平面,又因为,所以平面∥平面,而平面,所以∥平面.………5分(Ⅱ)因为,所以就是二面角的平面角,为,
……………………6分
又,所以平面,平面平面,作于,则,…………7分连结,在中由余弦定理求得,易求得,,,,.
……………8分以为原点,以平行于的直线为轴,以直线为
轴,建立如图空间直角坐标系,则,,,,设,则,,设平面的一个法向量为,,则由
得,,取得,,
…………10分平面的一个法向量,
…………11分所以,,
………12分为使锐二面角的余弦值为,只需,解得,此时,
…………………13分即所求的点为线段的靠近端的四分之一分点.…………14分19.已知命题p:方程x2﹣2x+m=0有两个不相等的实数根;命题q:2m+1<4.(1)若p为真命题,求实数m的取值范围;(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.参考答案:【考点】命题的真假判断与应用;复合命题的真假.【分析】(1)若p为真命题,则应有△=8﹣4m>0,解得实数m的取值范围;(2)若p∨q为真命题,p∧q为假命题,则p,q应一真一假,进而实数m的取值范围.【解答】解:(1)若p为真命题,则应有△=8﹣4m>0,…解得m<2.…(2)若q为真命题,则有m+1<2,即m<1,…因为p∨q为真命题,p∧q为假命题,则p,q应一真一假.…①当p真q假时,有,得1≤m<2;…②当p假q真时,有,无解.…综上,m的取值范围是[1,2).…(注:若借助数轴观察且得出正确答案,则给满分,否则不得分)20.求到两定点,距离相等的点的坐标满足的条件.参考答案:解析:设为满足条件的任一点,则由题意,得,.,即为所求点所满足的条件.21.
设数列的前项和为,且数列满足,点在直线上,.(I)求数列,的通项公式;(Ⅱ)设,求数列的前项和.参考答案:.解:(Ⅰ)由得,两式相减得.又,所以.故是首项为,公比为的等比数列.
所以.……4分
由点在直线上,所以.
(Ⅱ)因为,所以.…………………7分
则,……………8分两式相减得:所以.
…………………12分略22.已知f(x)=logmx(m为常数,m>0且m≠1),设f(a1),f(a2),…,f(an)(n∈N+)是首项为4,公差为2的等差数列.(1)求证:数列{an}是等比数列;(2)若bn=anf(an),记数列{bn}的前n项和为Sn,当m=时,求Sn;(3)若cn=anlgan,问是否存在实数m,使得{cn}中每一项恒小于它后面的项?若存在,求出实数m的取值范围.参考答案:【考点】等比关系的确定;数列的函数特性;数列的求和.【分析】(1)根据等差数列的通项公式可求得f(x)的解析式,进而求得an,进而根据推断出数列{an}是以m4为首项,m2为公比的等比数列(2)把(1)中的an代入bn=anf(an)求得bn,把m代入,进而利用错位相减法求得Sn.(3)把an代入cn,要使cn﹣1<cn对一切n≥2成立,需nlgm<(n+1)?m2?lgm对一切n≥2成立,进而根据m的不同范围求得答案.【解答】解:(1)由题意f(an)=4+2(n﹣1)=2n+2,即logman=2n+2,∴an=m2n+2∴∵m>0且m≠1,∴m2为非零常数,∴数列{an}是以m4为首项,m2为公比的等比数列(2)由题意bn=anf(an)=m2n+2logmm2n+2=(2n+2)?m2n+2,当∴Sn=2?23+3?24+4?25+…+(n+1)?2n+2①①式乘以2,得2Sn=2?24+3?25+4?26+…+n?2n+2+(n+1)?2n+3②②﹣①并整理,得Sn=﹣2?23﹣24﹣25﹣26﹣…﹣2n+2+(n+1)?2n+3=﹣23﹣[23+24+25+…+2n+2]+(n+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 港口集装箱装卸区施工合同
- 铁路桥梁外墙保温施工合同范本
- 2024年度农田水利工程进度与质量监控合同3篇
- 矿井安全监测系统拉管施工合同
- 2024年度汽车贷款贷后信用评级及动态调整合同3篇
- 建筑隔音劳务分包合同模板
- 烟草制品行业伤害处理规范
- 校园防恐安全协议
- 2025汽车购销合同协议
- 广西壮族自治区河池市十校协作体2024-2025学年高一上学期第二次联考数学试题(解析版)
- 五年级上册英语人教PEP版课件书面表达
- 中国常用汉字大全
- PPT:增进民生福祉提高人民生活品质
- 开具红字发票情况说明
- 2022 年奥赛希望杯二年级培训 100题含答案
- 水利工程建设汇报材料(通用3篇)
- 10篇罪犯矫治个案
- 中央企业商业秘密安全保护技术指引2015版
- 艾草种植基地建设项目可行性研究报告
- 留守儿童一生一档、联系卡
- GB/T 2007.2-1987散装矿产品取样、制样通则手工制样方法
评论
0/150
提交评论