广东省佛山市西南第二高级中学2021-2022学年高一数学文模拟试题含解析_第1页
广东省佛山市西南第二高级中学2021-2022学年高一数学文模拟试题含解析_第2页
广东省佛山市西南第二高级中学2021-2022学年高一数学文模拟试题含解析_第3页
广东省佛山市西南第二高级中学2021-2022学年高一数学文模拟试题含解析_第4页
广东省佛山市西南第二高级中学2021-2022学年高一数学文模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省佛山市西南第二高级中学2021-2022学年高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若且,则下列不等式成立的是

(

)

(A)

(B)

(C)

(D)参考答案:C略2.下列各组函数中,表示同一个函数的是(

)A.与

B.与

C.

D.与参考答案:D略3.数列1,1+2,1+2+4,…,1+2+4+…+2n各项和为(

A、2n+1-2-n

B、2n-n-1

C、2n+2-n-3

D、2n+2-n-2参考答案:C4.如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AE与BF所成角的余弦值为()A. B. C. D.参考答案:D【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,再利用向量法求出异面直线AE与BF所成角的余弦值.【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,E,F分别是C1D1,CC1的中点,A(2,0,0),E(0,1,2),B(2,2,0),F(0,2,1),=(﹣2,1,2),=(﹣2,0,1),设异面直线AE与BF所成角的平面角为θ,则cosθ===,∴异面直线AE与BF所成角的余弦值为.故选:D.【点睛】本题考查异面直线所成角的余弦值的求法,注意向量法的合理运用,属于基础题.5.(4)若直线a∥直线b,且a∥平面,则b与平面的位置关系是(

)A、一定平行

B、不平行

C、平行或相交

D、平行或在平面内参考答案:D略6.(5分)若0<α<,﹣<β<0,cos(+α)=,cos(﹣β),则cos(α+β)=() A. B. ﹣ C. D. ﹣参考答案:C考点: 两角和与差的余弦函数.专题: 计算题;三角函数的求值.分析: 由角的关系式:α+β=(+α)﹣(﹣β)即两角和的余弦公式即可展开代入从而求值.解答: 解:∵cos(+α)=,0<α<,∴<+α<,∴sin(+α)==,∵cos(﹣β)=,﹣<β<0,∴<﹣β<,∴sin(﹣β)==,∵α+β=(+α)﹣(﹣β),∴cos(α+β)=cos[(+α)﹣(﹣β)]=cos(+α)cos(﹣β)+sin(+α)sin(﹣β)===.故选:C.点评: 本题主要考察了两角和与差的余弦函数公式的应用,三角函数的求值,属于基础题.7.已知点,,直线l的方程为,且与线段AB相交,则直线l的斜率k的取值范围为(

)A. B. C. D.参考答案:A【分析】直线过定点,利用直线的斜率公式分别计算出直线,和的斜率,根据斜率的单调性即可求斜率的取值范围.【详解】解:直线整理为即可知道直线过定点,作出直线和点对应的图象如图:,,,,,要使直线与线段相交,则直线的斜率满足或,或即直线的斜率的取值范围是,故选:.【点睛】本题考查直线斜率的求法,利用数形结合确定直线斜率的取值范围,属于基础题.8.对于任意的直线l与平面,在平面内必有直线m,使m与l(

)A.平行

B.相交

C.垂直

D.互为异面直线参考答案:C9.在等比数列中,,,则 A.80

B.90

C.100

D.135参考答案:D10.一汽船保持船速不变,它在相距50千米的两码头之间流动的河水中往返一次(船速大于水速)的时间为,在静止的湖水中航行100千米的时间为,则的大小关系为

A.

B.

C. D.

大小不确定参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.已知点A(,0)和B(0,),又点C使∠COA=30°(O是坐标原点),且=m+n。则=

。参考答案:±12..将底边长为2的等腰直角三角形ABC沿高线AD折起,使∠BDC=60°,若折起后A、B、C、D四点都在球O的表面上,则球O的体积为.参考答案:【分析】通过底面三角形BCD求出底面圆的半径DM,判断球心到底面圆的距离OM,求出球O的半径OD,即可求解球O的体积.【解答】解:如图,在△BCD中,BD=1,CD=1,∠BDC=60°,底面三角形BCD的外接圆圆半径为r,则∴AD是球的弦,DA=1,∴OM=∴球的半径R=OD=,∴球O的体积为=.故答案为:13..函数满足:,则的最小值为

.参考答案:14.数列中,,且(,),则这个数列的______________.参考答案:略15.以下给出的是计算的值的一个程序框图(如图所示),其中判断框内应填入的条件是

参考答案:i>2016.如图,为测量山高MN,选择A和另一座山的山顶C为测量观测点.从A点测得

M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知山高BC=100m,则山高MN=m.参考答案:150【考点】解三角形的实际应用.【分析】由题意,可先求出AC的值,从而由正弦定理可求AM的值,在RT△MNA中,AM=100m,∠MAN=60°,从而可求得MN的值.【解答】解:在RT△ABC中,∠CAB=45°,BC=100m,所以AC=100m.在△AMC中,∠MAC=75°,∠MCA=60°,从而∠AMC=45°,由正弦定理得,,因此AM=100m.在RT△MNA中,AM=100m,∠MAN=60°,由得MN=100×=150m.故答案为:150.17.已知f(x)为奇函数,g(x)是偶函数,且f(﹣1)+g(1)=2,f(1)+g(﹣1)=4,则g(1)=

.参考答案:3【考点】函数奇偶性的性质.【分析】利用函数f(x)、g(x)的奇偶性可把已知等式化为关于f(1),g(1)的方程组,消掉f(1)即可求得g(1).【解答】解:∵f(x)为奇函数,∴f(﹣1)+g(1)=2可化为﹣f(1)+g(1)=2①,∵g(x)为偶函数,∴f(1)+g(﹣1)=4可化为f(1)+g(1)=4②,①+②得,2g(1)=6,解得g(1)=3,故答案为:3.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列{an}满足:,,.(1)求证:数列为等差数列,并求出数列{an}的通项公式;(2)记(),用数学归纳法证明:,参考答案:(1)证明见解析,;(2)见解析【分析】(1)定义法证明:;(2)采用数学归纳法直接证明(注意步骤).【详解】由可知:,则有,即,所以为等差数列,且首相为,公差,所以,故;(2),当时,成立;假设当时,不等式成立则:;当时,,因为,所以,则,故时不等式成立,综上可知:.【点睛】数学归纳法的一般步骤:(1)命题成立;(2)假设命题成立;(3)证明命题成立(一定要借助假设,否则不能称之为数学归纳法).19.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:PA∥平面BDE;(2)求证:平面PAC⊥平面BDE.参考答案:证明:(1)连结EO,在△PAC中,∵O是AC的中点,E是PC的中点,

∴OE∥AP又∵OE平面BDE,PA平面BDE,∴PA∥平面BDE(2)∵PO底面ABCD,∴POBD又∵ACBD,且ACPO=O,∴BD平面PAC.而BD平面BDE,∴平面PAC平面BDE。【分析】(1)连结OE,证明OE∥PA,即证PA∥平面BDE.(2)先证明BD⊥平面PAC,再证明平面PAC⊥平面BDE.【详解】(1)证明:连结OE,如图所示.∵O,E分别为AC,PC的中点,∴OE∥PA.∵OE?平面BDE,PA?平面BDE,∴PA∥平面BDE.(2)证明:∵PO⊥平面ABCD,∴PO⊥BD.在正方形ABCD中,BD⊥AC.又∵PO∩AC=O,∴BD⊥平面PAC.又∵BD?平面BDE,∴平面PAC⊥平面BDE.【点睛】本题主要考查空间几何元素的位置关系的证明,意在考查学生对这些知识的理解能力掌握水平和空间想象转化能力.20.已知圆x2+y2=8内有一点M(﹣1,2),AB为经过点M且倾斜角为α的弦.(1)当弦AB被点M平分时,求直线AB的方程;(2)当α=时,求弦AB的长.参考答案:考点: 直线与圆相交的性质.专题: 直线与圆.分析: (1)当弦AB被点M平分时,OM⊥AB,求出直线斜率即可求直线AB的方程;(2)当α=时,求出直线斜率和方程,根据直线与圆相交的弦长公式进行求解即可.解答: 解:(1)当弦AB被点M平分时,OM⊥AB,,直线AB的斜率.所以直线AB的方程为:,即x﹣2y+5=0…(4分)(2)当时,直线AB的斜率,直线AB的方程为:y﹣2=﹣1?(x+1),即x+y﹣1=0.…(6分)圆心O(0,0)到直线x+y﹣1=0的距离为,…(8分)所以弦AB的长.…(10分)点评: 本题主要考查直线和圆相交的位置关系的应用,以及弦长公式,考查学生的计算能力.21.下表提供了某厂节能降耗技术改造后生产甲产品过程记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:34562.5344.5

(1)已知产量和能耗呈线性关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)已知该厂技改前100吨甲产品的生产耗能为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?参考公式:参考答案:(1)由对照数据,计算得:,,,,∴,所以回归方程为.(2)当时,(吨标准煤),预测生产100吨甲产品的生产能耗比技改前降低(吨标准煤).22.已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=.(1)求a、b的值;(2)若不等式f(2x)﹣k?2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)若f(|2k﹣1|)+k?﹣3k=0有三个不同的实数解,求实数k的取值范围.参考答案:【考点】函数恒成立问题;函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】(1)由函数g(x)=a(x﹣1)2+1+b﹣a,a>0,所以g(x)在区间[2,3]上是增函数,故,由此解得a、b的值.(2)不等式可化为2x+﹣2≥k?2x,故有k≤t2﹣2t+1,t∈[,2],求出h(t)=t2﹣2t+1的最小值,从而求得k的取值范围.(3)方程f(|2k﹣1|)+k?﹣3k=0?|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,(|2x﹣1|≠0),令|2x﹣1|=t,则t2﹣(2+3k)t+(1+2k)=0(t≠0),构造函数h(t)=t2﹣(2+3k)t+(1+2k),通过数形结合与等价转化的思想即可求得k的范围.【解答】解:(1)函数g(x)=ax2﹣2ax+b+1=a(x﹣1)2+1+b﹣a,因为a>0,所以g(x)在区间[2,3]上是增函数,故,即,解得.(2)由已知可得f(x)=x+﹣2,所以,不等式f(2x)﹣k?2x≥0可化为2x+﹣2≥k?2x,可化为1+()2﹣2?≥k,令t=,则k≤t2﹣2t+1.因x∈[﹣1,1],故t∈[,2].故k≤t2﹣2t+1在t∈[,2]上恒成立.记h(t)=t2﹣2t+1,因为t∈[,2],故h(t)min=h(1)=0,所以k的取值范围是(﹣∞,0].(3)方程f(|2k﹣1|)+k?﹣3k=0可化为:|2x﹣1|2﹣(2+3k)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论