版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省永州市零陵区水口山镇中学高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有(
)
A.240种
B.192种
C.96种
D.48种
参考答案:B2.已知,,记则的大小关系是(
)A.
B.
C.
D.参考答案:选C
实际上A为在上的定积分,B为曲边梯形的面积。另将A,B作商、作差,再换元构造函数也可判断。3.若,则的解集为(
)A.
B.
C.
D.参考答案:A4.
在复平面内,复数对应的点位于
(
)
A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:答案:D5.已知点P在双曲线上,F1,F2分别为双曲线C的左右焦点,若外接圆面积与其内切圆面积之比为25:4.则双曲线C的离心率为(
)A. B.2 C.或 D.2或3参考答案:D【分析】是直角三角形,其外接圆的半径是斜边的一半,根据等面积法可用a、b、c表示出内切圆的半径,再由外接圆面积与其内切圆面积之比为可得双曲线的离心率.【详解】由于为直角三角形,故外心在斜边中线上.由于,所以,故外接圆半径为.设内切圆半径为,根据三角形的面积公式,有,解得,由题意两圆半径比为,故,化简得,解得或,故选D.【点睛】本题考查利用双曲线的性质求离心率,属于中档题;求离心率的常用方法有以下两种:(1)求得的值,直接代入公式求解;(2)列出关于的齐次方程(或不等式),然后根据,消去后转化成关于的方程(或不等式)求解.6.(5分)(2015?临潼区校级模拟)对定义域内的任意两个不相等实数x1,x2下列满足(x1﹣x2)<0的函数是()A.f(x)=x2B.f(x)=C.f(x)=lnxD.f(x)=0.5x参考答案:B【考点】:函数单调性的判断与证明.【分析】:判断选项中的函数的单调性,只有在定义域上单调递减的函数方符合题意.解:∵A项中f(x)=x2,函数对称轴为x=0,在(﹣∞,0]上单调减;在<0同理假设x1<x2,亦可得出结论∴B项正确.∵C,D项中的函数均为增函数,假设x1>x2∴f(x1)<f(x2)∴有(x1﹣x2)>0同理假设x1<x2,亦可得出此结论.∴C,D两项均不对故答案选B【点评】:本题主要考查函数单调性的判断与应用.属基础题.7.已知集合,则A
B
C
D参考答案:C8.参考答案:C9.若,且tanx=3tany,则x﹣y的最大值为(
)A. B. C. D.参考答案:B【考点】基本不等式;两角和与差的正切函数.【专题】函数的性质及应用.【分析】先用两角差的正切公式,求一下tan(x﹣y)的值,然后再由已知代换,利用均值不等式求得tan(x﹣y)的最大值,从而得到结果.【解答】解:∵,且tanx=3tany,x﹣y∈(0,),∴所以tan(x﹣y)===≤=tan,当且仅当3tan2y=1时取等号,∴x﹣y的最大值为:.故选B.【点评】本题主要考查两角和与差的正切函数,基本不等式的应用,注意角的范围,考查计算能力,属于中档题.10.命题“,”的否定是(
)A., B.,C., D.,参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.已知实数a,b,c满足a2+b2=c2,c≠0,则的取值范围为.参考答案:【考点】基本不等式.【专题】不等式的解法及应用.【分析】实数a,b,c满足a2+b2=c2,c≠0,化为=1,令=cosθ,=sinθ,θ∈[0,2π).可得k===,表示点P(2,0)与圆x2+y2=1上的点连线的在的斜率.利用直线与圆的位置关系即可得出.【解答】解:∵实数a,b,c满足a2+b2=c2,c≠0,∴=1,令=cosθ,=sinθ,θ∈[0,2π).∴k===,表示点P(2,0)与圆x2+y2=1上的点连线的直线的斜率.设直线l:y=k(x﹣2),则,化为,解得.∴的取值范围为.故答案为:.【点评】本题考查了三角函数换元法、直线的斜率计算公式、直线与圆的位置关系、点到直线的距离公式,考查了转化方法,考查了推理能力与计算能力,属于中档题.12.若关于的方程有四个不相等的实根,则实数的取值范围为____。参考答案:
13.已知函数,.若方程恰有4个互异的实数根,则实数的取值范围为__________.参考答案:
14.已知集合A={x|<0},B={x|x2﹣2x﹣3≥0,x∈R},则A∩B=.参考答案:{x|﹣5<x≤﹣1}【考点】交集及其运算.【分析】利用分式不等式和一元二次不等式分别求出集合A和B,由此能求出A∩B.【解答】解:∵集合A={x|<0}={x|﹣5<x<2},B={x|x2﹣2x﹣3≥0,x∈R}={x|x≤﹣1或x≥3},∴A∩B={x|﹣5<x≤﹣1}.故答案为:{x|﹣5<x≤﹣1}.15.双曲线的渐近线方程为
.参考答案:16.(坐标系与参数方程选做题)在极坐标系中,若直线与曲线有两个不同的交点,则实数的取值范围是
.参考答案:17.已知向量,,若∥,则
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.
甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:
甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖.
乙商场:从装有3个白球3个红球的盒子中一次性摸出2球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.
问:购买该商品的顾客在哪家商场中奖的可能性大?参考答案:略19.(本小题满分l3分)已知数列,前n项和满足,(I)求的通项公式;(Ⅱ)若,求数列的前n项和;(III)设,若数列是单调递减数列,求实数的取值范围.参考答案:20.(本小题14分)
如图5,在直三棱柱中,,,点、分别是、的中点.
(1)求证:平面;(2)证明:平面平面;参考答案:(1)证明:在矩形中,由得是平行四边形。…2分所以,
…4分又平面,平面,所以平面…6分(2)证明:直三棱柱中,,,,所以平面,…8分而平面,所以。…9分在矩形中,,从而,所以,
…10分又,所以平面,
…12分而平面,所以平面平面
…14分略21.(1)已知P是矩形ABCD所在平面上的一点,则有.试证明该命题;(2)将上述命题推广到P为空间上任一点的情形,写出这个推广后的命题并加以证明;(3)将矩形ABCD进一步推广到长方体ABCD-A1B1C1D1,并利用(2)得到的命题建立并证明一个新命题.参考答案:(1)证明:如图,设在直角坐标平面中,矩形的顶点坐标为,,,,点是直角坐标平面上的任意一点,则,,故.(2)推广命题:若棱锥的底面是矩形,则有.证明:如图,设棱锥的底面在空间直角坐标系的平面上,矩形的顶点坐标为,,,,设点坐标为,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJF(陕) 067-2021 硬质金属容器校准规范
- JJF(陕) 019-2019 混凝土氯离子电通量测定仪校准规范
- 《让安全伴你我同行》课件
- 增强市场竞争力的行动计划
- 研究员工激励机制效果计划
- 专业发展与教研活动的关系计划
- 精细化管理在仓库中的体现计划
- 消防安全责任落实机制培训
- 小班情景剧表演项目的设计计划
- 家用美容、保健电器具相关项目投资计划书范本
- 《汽车构造》期末考试复习题库(含答案)
- 2025年广东省春季高考数学仿真模拟试卷试题(含答案解析+答题卡)
- 陕西省咸阳市2023-2024学年高一上学期期末考试 地理 含答案
- 微积分(I)知到智慧树章节测试课后答案2024年秋南昌大学
- 口腔技术入股股份协议书(2篇)
- 2024年消防员劳动合同书
- 计量器具管理制度计量器具使用、维护、保养规章制度
- 齐白石介绍课件
- 《建设工程施工合同(示范文本)》(GF-2017-0201)
- 第二十五章 锐角的三角比(单元重点综合测试)
- 大学生朋辈心理辅导智慧树知到期末考试答案章节答案2024年浙江大学
评论
0/150
提交评论