版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省绍兴市上虞东关中学高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知{an}是等差数列,,其前10项和,则其公差d=A. B. C. D.参考答案:D,解得,则,故选D。2.根据表格中的数据可以判定方程的一个根所在的区间为(
)1234500.6931.0991.3861.60910123A.(1,2) B.(2,3) C.(3,4) D.(4,5)参考答案:C令,由表格数据可得.由零点存在性定理可知,在区间内必有零点.
3.在等比数列{an}中,a1=1,a10=3,则a4a5a6a7=A.
B.9
C.27
D.81参考答案:B4.将正方体截去一个四棱锥后得到的几何体如图所示,则有关该几何体的三视图表述正确的是A.正视图与俯视图形状完全相同
B.侧视图与俯视图形状完全相同C.正视图与侧视图形状完全相同
D.正视图、侧视图与俯视图形状完全相同参考答案:C5.已知数列{an}的通项公式an=n2+-11n-12,则此数列的前n项和取最小值时,项数n等于(
)A.
10或11 B.
12 C.
11或12 D.
12或13参考答案:C略6.(5分)有一个几何体的三视图如图所示,这个几何体应是一个() A. 棱台 B. 棱锥 C. 棱柱 D. 都不对参考答案:A考点: 由三视图还原实物图.分析: 根据主视图、左视图、俯视图的形状,将它们相交得到几何体的形状.解答: 由三视图知,从正面和侧面看都是梯形,从上面看为正方形,下面看是正方形,并且可以想象到连接相应顶点的四条线段就是几何体的四条侧棱,故这个三视图是四棱台.故选A.点评: 本题考查几何体的三视图与直观图之间的相互转化.7.若不等式对于一切成立,则的最小值是
(
)A.-2
B.
-
C.-3
D.0
参考答案:B略8.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据的平均数为
A.9
B.8.12
C.4.06
D.38参考答案:B9.已知函数f(x)=3x,对于定义域内任意的x1,x2(x1≠x2),给出如下结论:①f(x1+x2)=f(x1)?f(x2)②f(x1?x2)=f(x1)+f(x2)③>0④f(﹣x1)+f(﹣x2)=f(x1)+f(x2)其中正确结论的序号是()A.①③ B.①④ C.②③ D.②④参考答案:A【考点】指数函数的图象与性质.【专题】数形结合;定义法;函数的性质及应用.【分析】根据指数的运算法则即可①正确,②错误,④错误;根据函数f(x)=3x的单调性可以判断③正确.【解答】解:关于函数f(x)=3x,对于定义域内任意的x1,x2(x1≠x2):①f(x1+x2)==?=f(x1)?f(x2),∴①正确;②f(x1?x2)=≠+=f(x1)+f(x2),∴②错误;③f(x)=3x是定义域上的增函数,f′(x)=k=>0,∴③正确;④f(﹣x1)+f(﹣x2)=+≠+=f(x1)+f(x2),∴④错误;综上,正确结论的序号是①③.故选:A.【点评】本题考查了指数函数的图象与性质的应用问题,解题时应结合指数的运算性质与函数图象分析结论中式子的几何意义,再进行判断,是基础题目.10.=(
)
A.
B.
C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.已知函数的图象与函y=g(x)的图象关于直线y=x对称,令h(x)=g(1﹣x2),则关于h(x)有下列命题:①h(x)的图象关于原点对称;②h(x)为偶函数;③h(x)的最小值为0;
④h(x)在(0,1)上为增函数.其中正确命题的序号为
.(将你认为正确的命题的序号都填上)参考答案:②③④【考点】指数函数的图象与性质;对数函数的图象与性质.【专题】函数的性质及应用.【分析】先根据函数f(x)=的图象与函数g(x)的图象关于直线y=x对称,求出函数g(x)的解析式,然后根据奇偶性的定义进行判定,根据复合函数的单调性进行判定可求出函数的最值,从而得到正确选项.【解答】解:∵函数f(x)=的图象与函数g(x)的图象关于直线y=x对称,∴g(x)=∵h(x)=g(1﹣x2)=,x∈(﹣1,1)而h(﹣x)==h(x)则h(x)是偶函数,故①不正确,②正确该函数在(﹣1,0)上单调递减,在(0,1)上单调递增∴h(x)有最小值为0,无最大值故选项③④正确,故答案为:②③④【点评】本题主要考查了反函数,以及函数的奇偶性、单调性和最值,同时考查了奇偶函数图象的对称性,属于中档题.12.化为弧度角等于
;参考答案:略13.已知a,b,c,d为正实数,若,,成等差数列,a,db,c成等比数列,则d的最小值为
.参考答案:∵,,成等差数列,∴,∴.∵,,成等比数列,∴,∴,当且仅当时等号成立.∴d的最小值为.
14.若函数f(x)=
在[-1,3]上为减函数,则实数a的取值范围是__________。参考答案:15.已知函数(且)的图象必经过点,则点坐标是__________.参考答案:(-1,3)令得,故函数的图象必过定点.16.在空间直角坐标系中,已知,,点P在z轴上,且满足,则点P的坐标为
参考答案:略17.已知向量=(1,2),=(1,0),=(3,4),若λ为实数,(+λ)⊥,则λ的值为.参考答案:﹣【考点】9R:平面向量数量积的运算.【分析】求出+λ和的坐标,根据向量垂直列出方程解出λ.【解答】解:+λ=(1+λ,2λ),∵(+λ)⊥,∴(+λ)?=0,即3(1+λ)+8λ=0,解得λ=﹣.故答案为﹣.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列{an}的前n项和Sn,且满足:,.(1)求数列{an}的通项公式;(2)若,求数列的前n项和Tn.参考答案:解:(1)依题意:当时,有:又,故由①当时,有②①-②得:化简得:∴是以2为首项,2为公比的等比数列∴(2)由(1)得:∴∴
19.(13分)已知cos(75°+α)=,其中α是第三象限角,求cos(105°-α)+sin(α-105°)的值.参考答案:∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=-,sin(α-105°)=-sin(105°-α)=-sin[180°-(105°-α)]=-sin(75°+α).又∵cos(75°+α)=,α是第三象限角,∴75°+α为第四象限角.20.如图,在四棱锥中,是正方形,平面,,分别是的中点.(1)在线段上确定一点,使平面,并给出证明;(2)证明平面平面,并求出到平面的距离.参考答案:略21.已知函数f(x)=x2+2ax+2,x∈[﹣5,5],(1)当a=﹣1时,求函数的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调减函数.参考答案:(1)当a=﹣1时,函数表达式是f(x)=x2﹣2x+2,∴函数图象的对称轴为x=1,在区间(﹣5,1)上函数为减函数,在区间(1,5)上函数为增函数.∴函数的最小值为[f(x)]min=f(1)=1,函数的最大值为f(5)和f(﹣5)中较大的值,比较得[f(x)]max=f(﹣5)=37综上所述,得[f(x)]max=37,[f(x)]min=1(2)∵二次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度服装设计委托创作合同
- 感恩课程课件教学课件
- 2024年度互联网金融与投资合同
- 2024年城市供水供电管网改造工程合同
- 2024年度电子商务平台服务外包合同
- 2024年度智能家居产品购销合同
- 2024年屋产交易合同:个人卖家与买家之间的协议
- 2024年度光伏发电项目建设与运营合同
- 大学民法课件教学课件
- 公司中秋节员工的慰问信(18篇)
- 高考数学小题狂练:每题都附有详细解析
- 浮动码头施工方案
- Poka-Yoke防错技术(完整版)
- 保安交接班记录表(2)
- 神明—EZflame火焰检测系统
- 个人简历求职简历课件.ppt
- 2018年江苏高考满分作文:在母语的屋檐下
- 新青岛版五四制2021-2022四年级科学上册实验指导
- 小学四年级音乐课程标准
- 双向细目表和单元测试卷及组卷说明
- 离子色谱法测定空气中二氧化硫
评论
0/150
提交评论