版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省沧州市泊头洼里王中学2022-2023学年高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在R上定义运算:,若不等式对任意实数x恒成立,则实数a的取值范围为(
)A. B. C. D.参考答案:B【分析】把不等式对任意实数都成立,转化为对任意实数都成立,利用二次函数的性质,即可求解。【详解】由题意,可知不等式对任意实数都成立,又由,即对任意实数都成立,所以,即,解得,故选B。【点睛】本题主要考查了函数的新定义问题,以及不等式的恒成立问题,其中解答中把不等式的恒成立问题转化为一元二次不等式的恒成立,利用二次函数的图象与性质求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于基础题。2.函数(其中,)的部分图象如图所示、将函数f(x)的图象向左平移个单位长度,得到的图象,则下列说法正确的是(
)A.函数g(x)为奇函数B.函数g(x)的单调递增区间为C.函数g(x)为偶函数D.函数g(x)的图象的对称轴为直线参考答案:B【分析】本题首先可以根据题目所给出的图像得出函数f(x)的解析式,然后根据三角函数平移的相关性质以及函数f(x)的解析式得出函数g(x)的解析式,最后通过函数g(x)的解析式求出函数g(x)的单调递增区间,即可得出结果。【详解】由函数的图像可知函数的周期为、过点、最大值为3,所以,,,,,所以取时,函数的解析式为,将函数的图像向左平移个单位长度得,当时,即时,函数单调递增,故选B。【点睛】本题考查三角函数的相关性质,主要考查三角函数图像的相关性质以及三角函数图像的变换,函数向左平移个单位所得到的函数,考查推理论证能力,是中档题。
3.圆与圆的位置关系是(
)A.相交 B.内切 C.外切 D.相离参考答案:C【分析】据题意可知两个圆的圆心分别为,;半径分别为1和4;圆心距离为5,再由半径长度与圆心距可判断两圆位置关系.【详解】设两个圆的半径分别为和,因为圆的方程为与圆所以圆心坐标,圆心距离为5,由,可知两圆外切,故选C.4.经过对的统计量的研究,得到了若干个临界值,当的观测值时,我们(
)0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
A.在错误的概率不超过0.05的前提下可认为A与B有关B.在错误的概率不超过0.05的前提下可认为A与B无关C.在错误的概率不超过0.01的前提下可认为A与B有关D.没有充分理由说明事件A与B有关参考答案:A5.已知函数,则A.B.C.1D.0参考答案:C本题主要考查的是函数导数的求法,意在考查学生的运算求解能力.由可得,故,解得,所以故选C.6.设命题P:?n∈N,n2>2n,则¬P为()A.?n∈N,n2>2n B.?n∈N,n2≤2n C.?n∈N,n2≤2n D.?n∈N,n2=2n参考答案:C【考点】命题的否定.【专题】简易逻辑.【分析】利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以命题P:?n∈N,n2>2n,则¬P为:?n∈N,2n≤2n.故选:C.【点评】命题的否定和否命题的区别:对命题的否定只是否定命题的结论,而否命题,既否定假设,又否定结论.7.命题“∈R,-x+1≥0”的否定是(
)
A.∈R,lnx+x+1<0
B.∈R,-x+1<0
C.∈R,-x+1>0
D.∈R,-x+1≥0参考答案:B略8.下面的程序框图输出的S值是(
)A.2013 B.
C. D.3参考答案:D略9.在中,角A、B、C的对应边分别为、、,若满足,的恰有两解,则的取值范围是
()A.
B. C. D.参考答案:C略10.圆与圆的公共弦长为(
). A. 1 B.2 C. D.参考答案:D解:两圆方程相减公共弦所在直线方程为,与前一个圆距离,半径,则弦长.故选.二、填空题:本大题共7小题,每小题4分,共28分11.关于二项式(x-1)2005有下列命题:①该二项展开式中非常数项的系数和是1;②该二项展开式中第六项为Cx1999;③该二项展开式中系数最大的项是第1002项;④当x=2006时,(x-1)2005除以2006的余数是2005.其中正确命题的序号是__________.(注:把你认为正确的命题序号都填上)参考答案:①④略12.已知函数y=f(x)是R上的偶数,且当x≥0时,f(x)=2x+1,则当x<0时,f(x)=________.参考答案:2-x+113.若y=(m-1)x2+2mx+3是偶函数,则m=_________.参考答案:略14.在口袋中有不同编号的3个白球和2个黑球.如果不放回地依次取两个球,则在第1次取到白球的条件下,第2次也取到白球的概率是______________.参考答案:
14.
略15.已知f(x﹣1)=x2,则f(x)=
.参考答案:(x+1)2【考点】函数解析式的求解及常用方法.【分析】可用换元法求解该类函数的解析式,令x﹣1=t,则x=t+1代入f(x﹣1)=x2可得到f(t)=(t+1)2即f(x)=(x+1)2【解答】解:由f(x﹣1)=x2,令x﹣1=t,则x=t+1代入f(x﹣1)=x2可得到f(t)=(t+1)2∴f(x)=(x+1)2故答案为:(x+1)2.16.如图,直线l是曲线y=f(x)在x=3处的切线,f'(x)表示函数f(x)的导函数,则f(3)+f'(3)的值为.参考答案:
【考点】利用导数研究曲线上某点切线方程.【分析】根据导数的几何意义,f'(3)是曲线在(3,3)处的切线斜率为:f'(3)==﹣,又f(3)=3,可得结论.【解答】解:由题意,f'(3)==﹣,f(3)=3,所以f(3)+f′(3)=﹣+3=,故答案为:.【点评】本题考查了导数的几何意义.属于基础题.17.已知某校随机抽取了100名学生,将他们某次体育测试成绩制成如图所示的频率分布直方图.若该校有3000名学生,则在本次体育测试中,成绩不低于70分的学生人数约为__________.参考答案:2100三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=cos(2x﹣)﹣cos2x(x∈R).(I)求函数f(x)的单调递增区间;(II)△ABC内角A、B、C的对边长分别为a,b.,c,若f()=﹣,b=1,c=且a>b,求B和C.参考答案:【考点】正弦定理的应用;两角和与差的正弦函数.【分析】(1)将f(x)解析式第一项利用两角和与差的余弦函数公式及特殊角的三角函数值化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的递增区间为[2kπ﹣,2kπ+],x∈Z列出关于x的不等式,求出不等式的解集即可得到f(x)的递增区间;(2)由(1)确定的f(x)解析式,及f()=﹣,求出sin(B﹣)的值,由B为三角形的内角,利用特殊角的三角函数值求出B的度数,再由b与c的值,利用正弦定理求出sinC的值,由C为三角形的内角,利用特殊角的三角函数值求出C的度数,由a大于b得到A大于B,检验后即可得到满足题意B和C的度数.【解答】解:(1)f(x)=cos(2x﹣)﹣cos2x=sin2x﹣cos2x=sin(2x﹣),令2kπ﹣≤2x﹣≤2kπ+,x∈Z,解得:kπ﹣≤x≤kπ+,x∈Z,则函数f(x)的递增区间为[kπ﹣,kπ+],x∈Z;(2)∵f(B)=sin(B﹣)=﹣,∴sin(B﹣)=﹣,∵0<B<π,∴﹣<B﹣<,∴B﹣=﹣,即B=,又b=1,c=,∴由正弦定理=得:sinC==,∵C为三角形的内角,∴C=或,当C=时,A=;当C=时,A=(不合题意,舍去),则B=,C=.19.已知一个正三角形的周长为,求这个正三角形的面积。设计一个算法,解决这个问题。参考答案:算法步骤如下:
第一步:输入的值;第二步:计算的值;第三步:计算的值;第四步:输出的值。20.已知数列{an}满足a1=2,an+1=2an﹣1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=n?(an﹣1),求数列{bn}的前n项和Sn.参考答案:【考点】8H:数列递推式;8E:数列的求和.【分析】(I)数列{an}满足a1=2,an+1=2an﹣1.变形为:an+1﹣1=2(an﹣1).利用等比数列的通项公式即可得出.(II)bn=n?(an﹣1)=n?2n﹣1,利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(I)数列{an}满足a1=2,an+1=2an﹣1.变形为:an+1﹣1=2(an﹣1).a1﹣1=1.∴数列{an﹣1}是等比数列,∴an﹣1=2n﹣1,解得an=1+2n﹣1.(II)bn=n?(an﹣1)=n?2n﹣1,∴数列{bn}的前n项和Sn=1+2×2+3×22+…+n?2n﹣1,∴2Sn=2+2×22+…+(n﹣1)?2n﹣1+n?2n,∴﹣Sn=1+2+22+…+2n﹣1﹣n?2n=﹣n?2n=(1﹣n)?2n﹣1,可得Sn=(n﹣1)?2n+1.21.袋中有外形、质量完全相同的红球、黑球、黄球、绿球共12个,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率是.(1)试分别求得到黑球、黄球、绿球的概率;(2)从中任取一球,求得到的不是“红球或绿球”的概率.参考答案:【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)设A表示“抽取到红球”,B表示“取到黄球”,C表示取到绿球,D表示“取到黑球”,由已知条件列出方程组,能求出得到黑球、黄球、绿球的概率.(2)从中任取一球,得到的不是“红球或绿球”,由此可知得到的是“黑球或黄球”,从而能求出得到的不是“红球或绿球”的概率.【解答】解:(1)设A表示“抽取到红球”,B表示“取到黄球”,C表示取到绿球,D表示“取到黑球”,则,且P(A)+P(B)+P(C)+P(D)=1,解得P(B)=,P(C)=,P(D)=.∴得到黑球、黄球、绿球的概率分别为,,.(2)∵从中任取一球,得到的不是“红球或绿球”,∴得到的是“黑球或黄球”,∴得到的不是“红球或绿球”的概率p=P(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年幼儿园安全工作计划文本
- 山东大学计划生育办公室
- 第一学期德育工作总结第一学期德育工作计划
- 2024幼儿园教师培训工作计划样本
- 《IMS技术介绍》课件
- 2024-2024学年后20%的学生帮扶计划
- 2024前台工作计划例文
- 2024餐厅员工工作计划
- 2024年职工新岗位个人工作计划
- 2024学校心理健康工作计划
- 人行天桥桩基础施工方案
- 基于价值链模型的组织结构优化
- 针织学试卷及答案2套
- 《年鉴培训讲义》ppt课件
- 物理教学计划(初三复读班)
- 零星修缮工程年度合同
- 1:1000地形图测绘质检报告
- 花键强度校核程序
- 斯瓦西里语常用词(网上收集整理版)
- 铝锭来料检验记录表
- (完整版)员工人事变动表
评论
0/150
提交评论