沪科版九年级数学上册《213-第1课时-二次函数与一元二次方程》课件_第1页
沪科版九年级数学上册《213-第1课时-二次函数与一元二次方程》课件_第2页
沪科版九年级数学上册《213-第1课时-二次函数与一元二次方程》课件_第3页
沪科版九年级数学上册《213-第1课时-二次函数与一元二次方程》课件_第4页
沪科版九年级数学上册《213-第1课时-二次函数与一元二次方程》课件_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

21.3二次函数与一元二次方程导入新课讲授新课当堂练习课堂小结第1课时二次函数与一元二次方程1.通过探索,理解二次函数与一元二次方程之间的联系;(重点)2.会用二次函数图象求一元二次方程的近似解;(重点)3.通过研究二次函数与一元二次方程的联系体会数形结合思想的应用.(难点)学习目标导入新课情境引入问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2,考虑以下问题:讲授新课二次函数与一元二次方程的关系一(1)球的飞行高度能否达到15m?如果能,需要多少飞行时间?Oht1513∴当球飞行1s或3s时,它的高度为15m.解析:解方程15=20t-5t2,

t2-4t+3=0,

t1=1,t2=3.你能结合上图,指出为什么在两个时间求的高度为15m吗?h=20t-5t2(2)球的飞行高度能否达到20m?如果能,需要多少飞行时间?你能结合图形指出为什么只在一个时间球的高度为20m?Oht204解方程:20=20t-5t2,t2-4t+4=0,t1=t2=2.当球飞行2秒时,它的高度为20米.h=20t-5t2(3)球的飞行高度能否达到20.5m?如果能,需要多少飞行时间?Oht你能结合图形指出为什么球不能达到20.5m的高度?20.5解方程:20.5=20t-5t2,t2-4t+4.1=0,因为(-4)2-4×4.1<0,所以方程无解.即球的飞行高度达不到20.5米.h=20t-5t2(4)球从飞出到落地要用多少时间?Oht0=20t-5t2,t2-4t=0,t1=0,t2=4.当球飞行0秒和4秒时,它的高度为0米.即0秒时球地面飞出,4秒时球落回地面.h=20t-5t2从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?一般地,当y取定值且a≠0时,二次函数为一元二次方程.如:y=5时,则5=ax2+bx+c就是一个一元二次方程.为一个常数(定值)所以二次函数与一元二次方程关系密切.例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以解一元二次方程-x2+4x=3(即x2-4x+3=0).反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4x+3的值为0,求自变量x的值.利用二次函数深入讨论一元二次方程二思考观察思考下列二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1)y=x2+x-2;(2)y=x2-6x+9;(3)y=x2-x+1.1xyOy=x2-6x+9y=x2-x+1y=x2+x-2观察图象,完成下表:抛物线与x轴公共点个数公共点横坐标相应的一元二次方程的根y=x2-x+1y=x2-6x+9y=x2+x-20个1个2个x2-x+1=0无解3x2-6x+9=0,x1=x2=3-2,1x2+x-2=0,x1=-2,x2=1知识要点二次函数y=ax2+bx+c的图象与x轴交点一元二次方程ax2+bx+c=0的根b2-4ac有两个交点有两个不相等的实数根b2-4ac>0有一个交点有两个相等的实数根b2-4ac

=0没有交点没有实数根b2-4ac<0二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系例:求一元二次方程的根的近似值(精确到0.1).分析:一元二次方程x²-2x-1=0的根就是抛物线y=x²-2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.利用二次函数求一元二次方程的近似解三解:画出函数y=x²-2x-1的图象(如下图),由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.先求位于-1到0之间的根,由图象可估计这个根是-0.4或-0.5,利用计算器进行探索,见下表:x…-0.4-0.5…y…-0.040.25…观察上表可以发现,当x分别取-0.4和-0.5时,对应的y由负变正,可见在-0.5与-0.4之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到0.1,这时取x=-0.4或x=-0.5都符合要求.但当x=-0.4时更为接近0.故x1≈-0.4.同理可得另一近似值为x2≈2.4.一元二次方程的图象解法利用二次函数的图象求一元二次方程2x2+x-15=0的近似根.(1)用描点法作二次函数y=2x2+x-15的图象;(2)观察估计二次函数

y=2x2+x-15的图象与x轴的交点的横坐标;由图象可知,图象与x轴有两个交点,其横坐标一个是-3,另一个在2与3之间,分别约为-3和2.5(可将单位长再十等分,借助计算器确定其近似值);(3)确定方程2x2+x-15=0的解;由此可知,方程2x2+x-15=0的近似根为:x1≈-3,x2≈2.5.方法归纳一元二次方程ax2+bx+c=m的根就是二次函数y=ax2+bx+c与直线y=m(m是实数)图象交点的横坐标.既可以用求根公式求二次方程的根,也可以通过画二次函数图象来估计一元二次方程的根.说一说

判断方程

ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()

A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26

x3.233.243.253.26y=ax2+bx+c-0.06-0.020.030.09C1.根据下列表格的对应值:当堂练习2.若二次函数y=-x2+2x+k的部分图象如图所示,且关于x的一元二次方程-x2+2x+k=0的一个解x1=3,则另一个解x2=

;-1yOx133.一元二次方程3x2+x-10=0的两个根是x1=-2,x2=,那么二次函数y=3x2+x-10与x轴的交点坐标是

.(-2,0)(,0)4.若一元二次方程无实根,则抛物线的图象位于()A.x轴上方B.第一、二、三象限C.x轴下方D.第二、三、四象限A

判断方程

ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()

A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26

x3.233.243.253.26y=ax2+bx+c-0.06-0.020.030.09C5.根据下列表格的对应值:6.用图象法求一元二次方程 的解的近似值(精确到0.1).解:画出x2+x-1=0的图象,如图所示,由图象知,方程由两个根,一个在-2和-1之间,另一个在0到1之间.通过估算,可得到抛物线与x轴交点的横坐标大约为-1.6和0.6.即一元二次方程的实数根为x1≈-1.6,x2≈0.6.能力提升

已知二次函数的图象,利用图象回答问题:

(1)方程的解是什么?

(2)x取什么值时,y>0

(3)x取什么值时,y<0

?xyO248解:(1)x1=2,x2=4;(2)x<2或x>4;(3)2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论