版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Content§10.1TheZtransform§10.2TheROCforZT§10.3TheinverseZT§10.4Omit§10.5Omit§10.5PropertiesoftheZT§10.6SomecommonZTpairs§10.7AnalysisandcharacterizationofLTIsystemsusingZT§10.8Systemfunctionalgebraandblockdiagramrepresentation§10.9TheUnilateral(Bilateral)ZTTheZtransformContinuousDiscreteDiscreteak
andX(ej)withperiodof2.whereTheZtransform10.1TheZtransform
Insection3.2,foradiscreteLTIsystemwithh[n],ifinputiszn,theny[n]=H(z)zn(Thedominanceconditionalsomustbesatisfied).Atthattime,H(z)wasreferredtoasthesystemfunction.TheZtransform
Ifz=ej(i.e.|z|=r=1),then
H(z)=H(ej)wasdiscreteFTofh(n),orfrequencyresponseofthediscretesystem.1.DefinitionofZTordenoteitasTheZtransform
i.e.ZTofsequencex[n]isapowerseriesofcomplexvariablez-1,thecoefficientsiscorrespondingvalueofsequencex[n].2.TherelationshipbetweenZTanddiscreteFT∵z=rejThereforeX(z)istheFTofx[n]·r-n,thatisX(z)=F(x[n]r
–n)(10.7)
TheZtransformIfr=1or|z|=1=X(ej)=F(x[n])3.Z–plane(complexZ–plane)js-planeRe[z]Im[z]z-planerunitcircler=1original(=0,=0)r=1,=0
axisjaxisPositiveRe[z]axisunitcirclelefthalfplanerighthalfplaneinunitcircle(r1)outunitcircle(r1)z=rejTheZtransformAstheLTexiststheROC,theZTalso.ButtheROCofZTisaringoroutcircleorincircle.IftheROCincludestheunitcircle,thenFTofx[n]is4.CalculatingexamplesIf|z|>|a|,theseriesconverges,thenTheZtransformIf|z|<|a|,theseriesconverges,thenRe[z]Im[z]1TheZtransformrightshift1(3)ObtainalsoRe[z]Im[z]ROCaoAssignments(P797):10.2TheROCforZTThepropertiesofROCforZT:1)TheROCofX(z)consistsofaringinthez-planecenteredabouttheorigin.
Insomecases,theinnerboundarycanextendinwardtotheorigin.Inothercases,theouterboundarycanextendoutwardtoinfinity.2)TheROCdoesnotcontainanypoles.3)Ifx[n]isoffiniteduration,thentheROCistheentirez-plane,exceptpossiblyz=0
and/orz=∞.TheROCforZT
Example10.5[n]1|z|0(allz)otherOncemore4)IfX(z)isrational,thenitsROCisboundedbypolesorextendstoinfinity.Forexample:X(z)=z2/(z-1)havetwopoles:z=1andz=∞.butX(z)=1/(z-1)hasonlyapole:z=1.TheROCforZT5)IfX(z)isrational,andifx[n]isrightsided,thentheROCisoutsidecircleofoutermostpole.Furthermore,ifx[n]iscausal,theROCalsoincludedz=∞.6)IfX(z)isrational,andifx[n]isleftsided,thentheROCisinsidecircleofinnermostnonzeropoleandpossiblyincludingz=0.
Inparticular,ifx[n]isanti-causal,theROCalsoincludesz=0.Example10.8TheROCforZTTherearethreepossibleROC:If|z|>2,x[n]isrightsequence,If|z|<1/3(z0),x[n]isleftsequence,If1/3<|z|<2,x[n]istwosidedsequence,andthiscasetheROCincludesunitcircle,sotheFTalsoconverges.(seeFigure10.12)Assignments(P798):10.6,10.7.TheinverseZT
ForcalculatingtheinverseZT,havefollowingmethod:
Inversionintegral;Partial–fractionexpansion;Powerseriesexpansion.1)Inversionintegral(contourintegral)
Bothsidesmultiplybyzn-1andintegratealonganyclosedcontourintheROC.TheinverseZTAccordingtocomplexvariableintegralExample:givendeterminex[n].TheinverseZTSolution:X(z)zn-1therearethreepoles:(0,0.5,1)TheinverseZT2)Partial-fractionexpansion.FirstusingPFE,secondusingZTpair(becarefuloftheROC)
TheinverseZTExampleSolution:TheinverseZT3)Power-seriesexpansion
i.e.
X(z)isapowerseriesofz.Thecoefficientsinthisseriesarex[n].TheinverseZTExample10.12considerX(z)=4z2+2+3z-1,|z|:(0,∞)Fromeq.(10.3)obtain
x[n]=4δ[n+2]+2δ[n]+3δ[n-1]ExampleItcanbeexpandedbylongdivision:
i.e.
X(z)=2+0.5z-1+1.25z-2+0.875z-3+….orx[0]=2=1+(-0.5)0
x[1]=0.5=1+(-0.5)1
x[2]=1.25=1+(-0.5)2
….
x[n]=[1+(-0.5)n]u[n]TheinverseZT
IfROCis|z|<0.5(x[n]isleft),thenx[n]canbeexpandedbylongdivision:z-5z2+6z3–….…x[n]={…,6,-5,1,0}n=…,-3,-2,-1,0
TheinverseZTExample:Assignments(p798):10.9,10.10.PropertiesoftheZT10.5.1Linearity(seebyyourself)10.5.2TimeshiftingExceptforthepossibleadditionordeletionoftheoriginor∞.
Compare:x(t-t0)X(s)e-s0tExample:weknow[n]1allz,[n-2]z-2ROCz0,|z|>010.5.3ScalingintheZ–domainPropertiesoftheZTWherez0isanyconstantinz-plane.Compare:es0tx(t)X(s-s0)—shiftingintheSSequencex[n]multiplicationbyexponentialsequencebeequivalenttoscalinginz-domain.Poof:
X(z/z0)==z|z|:|z0|RPropertiesoftheZTExample:weknowInferPropertiesoftheZTRe[z]Im[z]ounitcircleRe[z]Im[z]0unitcircleoPole-zeropatternofx[n]Pole-zeropatternofej0n
x[n]PropertiesoftheZT10.5.4TimeReversal
x[-n]X(1/z),ROC=1/RExample:weknow10.5.5TimeExpansion(1)Definitionoftimeexpansion{x[n/k],Ifnisamultipleofk0,IfnisnotamultipleofkPropertiesoftheZT0123x[n]2134n4321012n364x[n/2]zerosinsertExampleCalculateY(z)PropertiesoftheZTSolution:Compare(a)with(b)Inthesameway,ZTofy[n]=x[2n]isPropertiesoftheZT10.5.7Convolutionproperty
(1)DifferenceintimedomainConsideranLTIsystem:y[n]=h[n]
x[n]ifh[n]=[n]-[n-1](thefirstdifference)theny[n]=x[n]-x[n-1]Lookatz-domainROC:allz,excepttheoriginthen
FromconvolutionpropertyDifferenceandpartialaccumulation.
ProofPropertiesoftheZT(2)Partialaccumulation10.5.8DifferentiationintheZ—DomainWiththepossibledeletionofz=0and/orpossibleadditionofz=1.ExamplePropertiesoftheZTCompare:tx(t)-dX(s)/ds
ROC:RExample:AnotherExamplePropertiesoftheZT10.5.9Theinitialandfinalvaluetheorem
(1)Ifx[n]=0,n<0,andthenumeratororderdenominatororderofX(z),then(2)Ifx[n]X(z),ROC:(1,),and(z-1)X(z),ROC:[1,)10.5.10Summaryofproperties(Table10.1)
ProofExample
ProofSomecommonZTpairsAnalysisLTIsystemsusingZTIftheinputtoaLTIsystemisx[n]=z0n,-<n<andifz0satisfythedominancecondition:|z0|>|pole|maxofH(z),theny[n]=H(z0)z0n,-<n<10.7.1CausalityAcausalLTIsystemhash[n]=0,forn<0.FortheH(z):(1)IftheROC>|a|,includinginfinity,thensystemiscausal.
Dominanceconditionisthatz0mustbelongstotheROCofH(z).AnalysisLTIsystemsusingZT2)LetH(z)isrational,ifandonlyif
(a)theROCis>|a|circleoutsidetheouter-mostpole.
(b)theorderofnumeratortheorderofdenominator.Thensystemiscausal.Example:NotcausalCausalAnalysisLTIsystemsusingZT10.7.2Stability-
equivalenttoh[n]absolutelysummable,i.e.FTofh[n]converges.(1)AnLTIstablesystem,theROCofH(z)mustincludeunitcircle|z|=1.(2)AnLTIstablecausalsystem,itsallofthepolesofrationalH(z)lieinsidetheunitcircle—i.e.|zj|<1.
Re[z]Im[z]r=1Re[z]Im[z]r=1AnalysisLTIsystemsusingZT10.7.3LTIsystemcharacterizedbylinearconstant-coefficientdifferenceequationsFromequationH(z)andh[n]orinverse.GenerallyZTtobothsidesAssignments(P800):10.16ExampleSystemfunctionalgebra10.8.1H(z)forinterconnectionsystemsSeriesandparallelform(omit)Feedbackform:AccordingtoMasonEquationH1(z)H2(z)+x[n]y[n]–+Systemfunctionalgebra10.8.2BlockdiagramrepresentationforcausalLTIsystemsThreebasicoperations:Example10.28(oneordersystem)ThecausalLTIsystemItsdifferenceequationisy[n]–¼y[n-1]=x[n]Systemblockdiagram:aZ-1+SystemfunctionalgebraFormulti-ordersystem,blockdiagramcanrepresentasdirectorcascadeorparallel.Example:GivenWritethedifferenceequation.(b)Drawthreeformsofblockdiagram.z-11/4+x[n]y[n]++SystemfunctionalgebraSolution:(b)FromMasone.q.directform:Systemfunctionalgebra(2)H(z)rewriteas(cascadeform)z–1+x[n]y[n]–0.5+z–1–0.16x[n]0.8z–1+z–1+y[n]–0.5+0.2Systemfunctionalgebra(3)ForH(z),byperformingapartial-fractionexpanding:Parallelform
+x[n]y[n]0.8z–1+0.50.2z–1+0.5Assignments(P800):10.18TheUnilateralZTDefinitionsothat,ifx[n]=0,n<0,UZ{x[n]}=Z{x[n]}ifx[n]0,n<0,UZ{x[n]}Z{x[n]}2.UnilateralZT,ROC:|z|>a.Example10.33Letx[n]=an+1u[n+1]ROCisalwaystheexteriorofacircle.TheUnilateralZTExample10.34Determinex[n]=?Solution:Notes:
(1)UZneednotlabelROC,UZ–1[X(z)]isalwayscausalsignal.(2)TheUnilateralZT
thenthedegreeofp(z)thedegreeofq(z),otherwise,UZ-1[X(z)]doesnotexist.Forexample
Z-1[X(z)]=an+1u[n+1](x[n]0,n=-1)
i.e.theUZ-1oftheX(z)doesnotexist.3.TimeconvolutionofUZT
thenTheUnilateralZT4.TimeshiftingofUZT∵x[n-1]u[n]=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年全方位环保管家技术服务协议
- 2024年土地回填工程承包协议
- 2024年农产品市场拓展与种植合作协议
- 浮动物流运输协议
- 2024年商业活动组织委托合同
- 2024年乡村公厕改善建设合同
- 2024年城市公交车辆更新改造合同
- 2024年临时工合同:灵活性与权益保障并重
- 2024年原材料供需合同
- 2024年劳动权益保障与工伤赔偿协议
- 降低住院患者跌倒发生率
- 城市道路路面PCI计算(2016版养护规范)
- 数字信号处理大作业
- 公路管理工作常见五大诉讼风险及防范
- 公安局市人大代表履职情况报告
- 课题结题成果鉴定书.doc
- 大江公司高浓度磷复肥工程可行性研究报告(优秀可研报告)
- 修旧利废实施方案
- 带轴间差速器地分动器特性分析报告材料
- 急诊科护理质量控制措施
- [复习考试资料大全]事业单位考试题库:乡村振兴试题及答案
评论
0/150
提交评论