2021年安徽省阜阳市颍东区第十四中学高一数学理上学期期末试卷含解析_第1页
2021年安徽省阜阳市颍东区第十四中学高一数学理上学期期末试卷含解析_第2页
2021年安徽省阜阳市颍东区第十四中学高一数学理上学期期末试卷含解析_第3页
2021年安徽省阜阳市颍东区第十四中学高一数学理上学期期末试卷含解析_第4页
2021年安徽省阜阳市颍东区第十四中学高一数学理上学期期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年安徽省阜阳市颍东区第十四中学高一数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的值域是:(

)A.

B.

C.

D.参考答案:A2.设为奇函数且在(-∞,0)上单调递减,,则的解集为()A.(-2,0)∪(2,+∞) B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)参考答案:D3.已知是(﹣∞,+∞)上的增函数,那么a的取值范围是()A.[,3) B.(0,3) C.(1,3) D.(1,+∞)参考答案:A【考点】对数函数的单调性与特殊点;函数单调性的性质.【分析】由x<1时,f(x)=(3﹣a)x﹣a是增函数解得a<3;由x≥1时,f(x)=logax是增函数,解得a>1.再由f(1)=loga1=0,(3﹣a)x﹣a=3﹣2a,知a.由此能求出a的取值范围.【解答】解:∵f(x)=是(﹣∞,+∞)上的增函数,∴x<1时,f(x)=(3﹣a)x﹣a是增函数∴3﹣a>0,解得a<3;x≥1时,f(x)=logax是增函数,解得a>1.∵f(1)=loga1=0∴x<1时,f(x)<0∵x=1,(3﹣a)x﹣a=3﹣2a∵x<1时,f(x)=(3﹣a)x﹣a递增∴3﹣2a≤f(1)=0,解得a.所以≤a<3.故选A.4.对于样本频率分布直方图与总体密度曲线的关系,下列说法正确的是(

) A.频率分布直方图与总体密度曲线无关 B.频率分布直方图就是总体密度曲线 C.样本总量很大的频率分布直方图就是总体密度曲线 D.如果样本容量无限增大,分组的组距无限减小,那么频率分布直方图就会无限接近于总体密度曲线参考答案:D略5.定义在R上的函数f(x)满足,则f(2015)的值为A.-1

B.0

C.1

D.2参考答案:C由已知得f(-1)=log22=1,f(0)=0,f(1)=f(0)-f(-1)=-1,f(2)=f(1)-f(0)=-1,f(3)=f(2)-f(1)=-1-(-1)=0,f(4)=f(3)-f(2)=0-(-1)=1,f(5)=f(4)-f(3)=1,f(6)=f(5)-f(4)=0,所以f(n)的值以6为周期重复性出现,所以f(2015)=f(5)=1,故选C.6.角的终边过点P,则的值为 ()A.

B.

C.

D.参考答案:D7.设函数的定义域为,值域为,给出以下四个结论:①的最小值为

②的最大值为③可能等于

④可能等于其中正确的有(

A.4个

B.3个

C.2个

D.1个参考答案:B8.某时段内共有100辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过60km/h的汽车数量为()A.38辆 B.28辆 C.10辆 D.5辆参考答案:A【考点】用样本的频率分布估计总体分布.【专题】计算题.【分析】根据频率分步直方图看出时速超过60km/h的汽车的频率比组距的值,用这个值乘以组距,得到这个范围中的频率,用频率当概率,乘以100,得到时速超过60km/h的汽车数量.【解答】解:根据频率分步直方图可知时速超过60km/h的概率是10×(0.01+0.028)=0.38,∵共有100辆车,∴时速超过60km/h的汽车数量为0.38×100=38(辆)故选A.【点评】本题考查用样本的频率估计总体分布,频数、频率和样本容量三者之间的关系是知二求一,这种问题会出现在选择和填空中,有的省份也会以大题的形式出现,把它融于统计问题中.9.有一条信息,若1人得知后用1小时将其传给2人,这2人又用1小时分别传给未知此信息的另外2人,如此继续下去,要传遍100万人口的城市,所需的时间大约是:A.10天

B.2天

C.1天

D.半天参考答案:C10.图中阴影部分表示的集合是(

A.

B.

C.

D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.如图,边长为a的正△ABC中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形,现给出下列命题,其中正确的命题有______(填上所有正确命题的序号).(1)动点A′在平面ABC上的射影在线段AF上;(2)三棱锥A′-FED的体积有最大值;(3)恒有平面A′GF⊥平面BCED;(4)异面直线A′E与BD不可能互相垂直.参考答案:(1)(2)(3)12.给出下列六个命题,其中正确的命题是①存在α满足sinα+cosα=;②y=sin(π﹣2x)是偶函数;③x=是y=sin(2x+)的一条对称轴;④y=esin2x是以π为周期的(0,)上的增函数;⑤若α、β是第一象限角,且α>β,则tanα>tanβ;⑥函数y=3sin(2x+)的图象可由y=3sin2x的图象向左平移个单位得到.参考答案:②③【考点】正弦函数的奇偶性;象限角、轴线角;正弦函数的对称性;函数y=Asin(ωx+φ)的图象变换.【分析】本题利用直接法对六个命题进行逐一进行判定即可.【解答】解:①sinα+cosα=sin(α+)∈[﹣,],∴sinα+cosα≠,故不正确.②y=sin(﹣2x)=sin(﹣2x)=cos2x,是偶函数,故正确.③对y=sin(2x+),由2x+=+kπ,得x=﹣+,(k∈Z)是对称轴方程.取k=1得x=,故正确.④y=sin2x在(0,)上不是增函数,∴y=esin2x在(0,)上也不是增函数,故错误.⑤y=tanx在第一象限不是增函数.∴α>β,不一定有tanα>tanβ,故错误.⑥y=3sin(2x+)=3sin2(x+),可由y=3sin2x的图象向左平移个单位得到,故错误.故选②③13.等比数列的公比,前项的和为.令,数列的前项和为,若对恒成立,则实数的最小值为

.参考答案:14.已知函数的图象上关于y轴对称的点恰有9对,则实数a的取值范围是.参考答案:【考点】3O:函数的图象.【分析】求出函数f(x)=sin(x)﹣1,(x<0)关于y轴对称的解析式,利用数形结合即可得到结论.【解答】解:若x>0,则﹣x<0,∵x<0时,f(x)=sin(x)﹣1,∴f(﹣x)=sin(﹣x)﹣1=﹣sin(x)﹣1,则若f(x)=sin(x)﹣1,(x<0)关于y轴对称,则f(﹣x)=﹣sin(x)﹣1=f(x),即y=﹣sin(x)﹣1,x>0,设g(x)=﹣sin(x)﹣1,x>0作出函数g(x)的图象,要使y=﹣sin(x)﹣1,x>0与f(x)=logax,x>0的图象恰有9个交点,则0<a<1且满足f(17)>g(17)=﹣2,f(21)<g(21)=﹣2,即﹣2<loga17,loga21<﹣2,即loga17>logaa﹣2,loga21<logaa﹣2,则17<,21>,解得<a<,故答案为:15.△ABC中,“A>B”是“sinA>sinB”的

条件.参考答案:充要【考点】必要条件、充分条件与充要条件的判断.【分析】由正弦定理知asinA=bsinB,由sinA>sinB,知a>b,所以A>B,反之亦然,故可得结论.【解答】解:由正弦定理知,若sinA>sinB成立,则a>b,所以A>B.反之,若A>B成立,则有a>b,∵a=2RsinA,b=2RsinB,∴sinA>sinB,所以,“A>B”是“sinA>sinB”的充要条件故答案为:充要.16.已知数列{an}满足,若{an}为单调递增的等差数列,其前n项和为,则__________,若{an}为单调递减的等比数列,其前n项和为,则n=__________。参考答案:

370,617.设集合A={x∈Q|x>-1},则_______A.(用适当的符号填空)参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数(1)求闭函数符合条件②的区间[];(2)判断函数是否为闭函数?并说明理由;(3)若是闭函数,求实数的取值范围.参考答案:.解:(1)由题意,在[]上递减,则解得

所以,所求的区间为[-1,1]

(2)取则,即不是上的减函数取,即不是上的增函数所以,函数在定义域内不单调递增或单调递减,从而该函数不是闭函数(3)若是闭函数,则存在区间[],在区间[]上,函数的值域为[],即,为方程的两个实数根,略19.已知定义在上的函数为常数,若为偶函数,(1)求的值;(2)判断函数在内的单调性,并用单调性定义给予证明.参考答案:(1)由为偶函数,得,从而;

故(2)在上单调增

证明:任取且,,当,且,,从而,即在上单调增;略20.在△ABC中,角A、B、C所对的边分别为a、b、c,满足.(1)求角A的大小;(2)若,,求△ABC的面积.参考答案:(1);(2).试题分析:(1)利用正弦定理边化角,求得,所以;(2)利用余弦定理,得,所以。试题解析:(1)△ABC中,由条件及正弦定理得,∴.∵,,∵,∴.(2)∵,,由余弦定理得,∴.∴.点睛:本题考查解三角形。解三角形的关键是正确应用正弦定理和余弦定理,本题中,条件是边角都有的复杂式子,同时边是左右齐次的关系,所以可以利用正弦定理进行边化角处理。若条件都是边的关系,则可以用余弦定理处理。21.(本小题满分10分)已知函数的定义域是,且满足,,如果对于,都有,(1)求;(2)解不等式。参考答案:(1)令,则(2分)(2),(4分),(6分,)则得(10分)22.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x(千部)手机,需另投入成本R(x)万元,且,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(Ⅰ)求出2020年的利润W(x)(万元)关于年产量x(千部)的函数关系式,(利润=销售额—成本);(Ⅱ)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?参考答案:(Ⅰ)(Ⅱ)2020年产量为100(千部)时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论