2021-2022学年浙江省台州市椒江区第五中学数学八年级第二学期期末经典模拟试题含解析_第1页
2021-2022学年浙江省台州市椒江区第五中学数学八年级第二学期期末经典模拟试题含解析_第2页
2021-2022学年浙江省台州市椒江区第五中学数学八年级第二学期期末经典模拟试题含解析_第3页
2021-2022学年浙江省台州市椒江区第五中学数学八年级第二学期期末经典模拟试题含解析_第4页
2021-2022学年浙江省台州市椒江区第五中学数学八年级第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,……,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米 B.150米 C.160米 D.240米2.a,b,c为常数,且,则关于x的方程根的情况是A.有两个相等的实数根 B.有两个不相等的实数根C.无实数根 D.有一根为03.八年级一班要在赵研、钱进、孙兰、李丁四名同学中挑选一名同学去参加数学竞赛,四名同学在5次数学测试中成绩的平均数x及方差S2如下表所示:甲乙丙丁85939386S2333.53.7如果选出一名成绩较好且状态稳定的同学去参赛,那么应选()A.赵研 B.钱进 C.孙兰 D.李丁4.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16 B.16 C.8 D.85.若点P(3,2m-1)在第四象限,则m的取值范围是()A. B. C. D.6.若直线经过第一、二、四象限,则直线的图象大致是()A. B.C. D.7.下列图形不是中心对称图形的是A. B. C. D.8.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,…,按此规律,第⑥个图形中矩形的个数为()A.31 B.30 C.28 D.259.若a>b,则下列式子正确的是()A.a﹣4>b﹣3 B.a<b C.3+2a>3+2b D.﹣3a>﹣3b10.如图.在正方形中,为边的中点,为上的一个动点,则的最小值是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中直线y=−x+10与x轴,y轴分别交于A.B两点,C是OB的中点,D是线段AB上一点,若CD=OC,则点D的坐标为___12.如图,在平面直角坐标系中,正方形OA1B1C1,B1A2B2C2,B2A3B3C3,···的顶点B1,B2,B3,···在x轴上,顶点C1,C2,C3···在直线y=kx+b上,若正方形OA1B1C1,B1A2B2C2的对角线OB1=2,B1B2=3,则点C5的纵坐标是_____.13.方程的两个根是和,则的值为____.14.若关于的方程有增根,则的值是________.15.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC=2,CE=4,则四边形ACEB的周长为▲.16.如果最简二次根式与最简二次根式同类二次根式,则x=_______.17.有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=_____.18.正比例函数y=mx经过点P(m,9),y随x的增大而减小,则m=__.三、解答题(共66分)19.(10分)将两块全等的三角板如图①摆放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.(1)将图①中的△A1B1C顺时针旋转45°得图②,点P1是A1C与AB的交点,点Q是A1B1与BC的交点,求证:CP1=CQ;(2)在图②中,若AP1=2,则CQ等于多少?20.(6分)分解因式:5x2-4521.(6分)已知:在中,,为的中点,,,垂足分别为点,且.求证:是等边三角形.22.(8分)如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?23.(8分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF的中点,连接DG.(1)求证:BC=DF;(2)连接BD,求BD∶DG的值.24.(8分)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(-1,2)、B两点,求m、n的值并直接写出点B的坐标.25.(10分)如图在△ABC中,AD是BC边上的高,CE是AB边上的中线,且∠B=2∠BCE,求证:DC=BE.26.(10分)如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.【详解】已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B.【点睛】本题考查多边形内角与外角,熟记公式是关键.2、B【解析】试题解析:∵,∴ac<1.在方程中,△=≥﹣4ac>1,∴方程有两个不相等的实数根.故选B.3、B【解析】

根据平均数和方差的意义解答.【详解】从平均数看,成绩最好的是钱进、孙兰同学,从方差看,钱进方差小,发挥最稳定,所以如果选出一名成绩较好且状态稳定的同学去参赛,那么应选钱进.故选:.【点睛】本题考查了平均数和方差,熟悉它们的意义是解题的关键.4、C【解析】

根据四边形ABCD是菱形,且∠BAD=120°可知∠ABC=60°,AB=AC,即△ABC为等边三角形,则AB=AC=BC=4,作AE⊥BC于点E,可得BE=2,AE=,求得S菱形ABCD=BC·AE=4×=【详解】在菱形ABCD中,有AB=AC∵∠BAD=120°∴∠ABC=60°∴△ABC为等边三角形即AB=AC=BC=4作AE⊥BC于点E∴BE=2,AE=∴S菱形ABCD=BC·AE=4×=故选C【点睛】本题考查了菱形的性质,,等边三角形的判定,30°,60°,90°角三角形的边长关系,解本题的关键是发现图中的等边三角形,将对角线长度转化为菱形边长.5、B【解析】

根据点P在第四象限得出其纵坐标小于0,即2m-1<0,解之可得.【详解】解:∵点P(3,2m-1)在第四象限,

∴2m-1<0,

2m<1,故选:B.【点睛】本题主要考查点的坐标和解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6、D【解析】

根据直线y=ax+b经过第一、二、四象限,可以判断a和b的正负,从而可以判断直线y=bx+a经过哪几个象限,本题得以解决.【详解】解:∵直线y=ax+b经过第一、二、四象限,

∴a<0,b>0,

∴y=bx+a经过第一、三、四象限,

故选:D.【点睛】本题考查一次函数的性质和图象,解答本题的关键是明确题意,利用一次函数的性质解答.7、D【解析】

根据中心对称图形的概念求解.【详解】A、是中心对称图形.故不能选;

B、是中心对称图形.故不能选;

C、是中心对称图形.故不能选;

D、不是中心对称图形.故可以选.故选D【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、A【解析】

由于图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,第n个图形矩形的个数是5n+1把n=6代入求出即可.【详解】解:∵图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,∴第n个图形矩形的个数是5n+1当n=6时,5×6+1=31个.故选:A.【点睛】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.9、C【解析】

根据不等式的性质将a>b按照A、B、C、D四个选项的形式来变形看他们是否成立.【详解】解:A、a>b⇒a﹣4>b﹣4或者a﹣3>b﹣3,故A选项错误;B、a>b⇒a>b,故B选项错误;C、a>b⇒2a>2b⇒3+2a>3+2b,故C选项正确;D、a>b⇒﹣3a<﹣3b,故D选项错误.故选C.考点:不等式的性质.10、A【解析】

根据正方形的性质得到点A和点C关于BD对称,BC=AB=4,由线段的中点得到BE=2,连接AE交BD于P,则此时,PC+PE的值最小,根据勾股定理即可得到结论.【详解】解:四边形为正方形关于的对称点为.连结交于点,如图:此时的值最小,即为的长.∵为中点,BC=4,∴BE=2,∴.故选:A.【点睛】本题考查了轴对称-最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.二、填空题(每小题3分,共24分)11、(4,8)【解析】

由解析式求得B的坐标,加入求得C的坐标,OC=5,设D(x,-x+10),根据勾股定理得出x+(x-5)=25,解得x=4,即可求得D的坐标.【详解】由直线y=−x+10可知:B(0,10),∴OB=10,∵C是OB的中点,∴C(0,5),OC=5,∵CD=OC,∴CD=5,∵D是线段AB上一点,∴设D(x,-x+10),∴CD=∴解得x=4,x=0(舍去)∴D(4,8),故答案为:(4,8)【点睛】此题考查一次函数与平面直角坐标系,勾股定理,解题关键在于利用勾股定理进行计算12、(,)【解析】

利用正方形性质,求得C1、C2坐标,利用待定系数法求得函数关系式,再求C3坐标,根据C1、C2、C3坐标找出纵坐标规律,求得C5纵坐标,代入关系式,求得C5坐标即可.【详解】如图:根据正方形性质可知:OB1=2,B1B2=3C1坐标为(1,1),C2坐标为(,)将C1、C2坐标代入y=kx+b解得:所以该直线函数关系式为设,则坐标为(1+2+a,a)代入函数关系式为,得:,解得:则C3(,)则C1(1,1),C2(,),C3(,)找出规律:C4纵坐标为,C5纵坐标为将C5纵坐标代入关系式,即可得:C5(,)【点睛】本题为图形规律与一次函数综合题,难度较大,熟练掌握正方形性质以及一次函数待定系数法为解题关键.13、【解析】

根据韦达定理求解即可.【详解】∵方程的两个根是和∴由韦达定理得故答案为:.【点睛】本题考查了一元二次方程根的问题,掌握韦达定理是解题的关键.14、.【解析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】解:方程两边都乘x-2,得

∵方程有增根,

∴最简公分母x-2=0,即增根是x=2,

把x=2代入整式方程,得.

故答案为:.【点睛】考查了分式方程的增根,增根问题可按如下步骤进行:

①根据最简公分母确定增根的值;

②化分式方程为整式方程;

③把增根代入整式方程即可求得相关字母的值.15、10+.【解析】先证明四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.∵∠ACB=90°,DE⊥BC,∴AC∥DE.又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=1.在Rt△CDE中,DE=1,CE=2,由勾股定理得.∵D是BC的中点,∴BC=1CD=2.在△ABC中,∠ACB=90°,由勾股定理得.∵D是BC的中点,DE⊥BC,∴EB=EC=2.∴四边形ACEB的周长=AC+CE+EB+BA=10+.16、1【解析】

∵最简二次根式与最简二次根式是同类二次根式,∴x+3=1+1x,解得:x=1.当x=1时,6和是最简二次根式且是同类二次根式.17、1.【解析】试题分析:利用平均数的定义,列出方程即可求解.解:由题意知,3,a,4,6,7的平均数是1,则=1,∴a=21﹣3﹣4﹣6﹣7=1.故答案为1.点评:本题主要考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数,难度适中.18、-1【解析】

直接根据正比例函数的性质和待定系数法求解即可.【详解】解:把x=m,y=9代入y=mx中,

可得:m=±1,

因为y的值随x值的增大而减小,

所以m=-1,

故答案为-1.【点睛】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.三、解答题(共66分)19、(1)证明见解析;(2)CQ=【解析】分析:(1)利用△A1CB1≌△ACB得到CA1=CA,再根据旋转的性质得∠B1CB=∠A1CA=45°,则∠BCA1=45°,于是根据“ASA”判断△CQA1≌△CP1A,所以CP1=CQ;(2)过点P1作P1P⊥AC于点P,如图②,先在Rt△AP1P中根据含30度的直角三角形三边的关系得到P1P=AP1=×2=1,然后在Rt△CP1P中利用等腰直角三角形的性质得CP=P1P=1,CP1=PP1=,由(1)得CQ=CP1=.详解:(1)∵△A1CB1≌△ACB,∴CA1=CA.∵图①中的△A1B1C顺时针旋转45°得图②,∴∠B1CB=∠A1CA=45°,∴∠BCA1=45°.在△CQA1和△CP1A中,∵,∴△CQA1≌△CP1A,∴CP1=CQ;(2)过点P1作P1P⊥AC于点P,如图②.在Rt△AP1P中,∵∠A=30°,∴P1P=AP1=×2=1.在Rt△CP1P中,∵∠P1CP=45°,∴CP=P1P=1,∴CP1=PP1=,∴CQ=CP1=.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.旋转有三要素:旋转中心;旋转方向;旋转角度.也考查了等腰直角三角形的性质.20、5(x+3)(x-3)【解析】

先提出公因式5,然后用平方差公式进行分解即可。【详解】解:原式=5(x+3)(x-3)故答案为:5(x+3)(x-3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键21、证明见解析.【解析】分析:由等腰三角形的性质得到∠B=∠C.再用HL证明Rt△ADE≌Rt△CDF,得到∠A=∠C,从而得到∠A=∠B=∠C,即可得到结论.详解:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°.∵D为的AC中点,∴DA=DC.又∵DE=DF,∴RtΔAED≌RtΔCDF(HL),∴∠A=∠C,∴∠A=∠B=∠C,∴ΔABC是等边三角形.点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质.解题的关键是证明∠A=∠C.22、(1)体育场离陈欢家2.5千米,小刚在体育场锻炼了15分钟;(2)体育场离文具店1千米;(3)

小刚在文具店停留20分;(4)小强从文具店回家的平均速度是千米/分【解析】

(1)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;(2)根据观察函数图象的横坐标,可得体育场与文具店的距离;(3)观察函数图象的横坐标,可得在文具店停留的时间;(4)用回家的路程除以回家的时间即可.【详解】(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店3.5-2.5=1(千米);(3)由横坐标看出

小刚在文具店停留55-35=20(分);(4)小强从文具店回家的平均速度是3.5÷(125-55)=(千米/分)【点睛】本题考查了函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.23、(1)详见解析;(2)【解析】

(1)根据矩形的性质解答即可;(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.【详解】证明:(1)∵四边形ABCD为矩形,∴AD=BC,∠BAD=∠ADC=90°,∵AF平分∠BAD,∴∠DAF=45°,∴AD=DF,∴BC=DF;(2)连接CG,BG,∵点G为EF的中点,∴GF=CG,∴∠F=∠BCG=45°,在△BCG与△DFG中,∴△BCG≌△DFG(SAS),∴BG=DG,∠CBG=∠FDG,∴△BDG为等腰直角三角形,∴BD=DG,∴BD:DG=:1.【点睛】此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.24、m=-2,n=-2,B(1,-2).【解析】

利用待定系数法即可解决问题,根据对称性或利用方程组确定点B坐标.【详解】解:∵直线y=mx与双曲线相交于A(-1,2),∴m=-2,n=-2,∵A,B关于原点对称,∴B(1,-2).【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,属于中考常考题型.25、见解析.【解析】

连接DE.想办法证明∠BCE=∠DEC即可解决问题.【详解】证明:连接DE.∵AD是BC边上的高,CE是AB边上的中线,∴∠ADB=90°,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论