版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
全等三角形的判定方法的综合运用第一页,共十四页,编辑于2023年,星期二1.理解三角形全等的判定,并会运用它们解决实际问题;(重点)2.经历探索三角形全等的几种判定方法的过程,能进行合情推理;(难点)3.培养良好的几何思维,体会几何学的应用价值.(难点)学习目标第二页,共十四页,编辑于2023年,星期二导入新课回顾与思考问题1
判定两个三角形全等除了定义以外,我们还学习了哪些方法?(1)“SAS”:两边及其夹角对应相等的两个三角形全等;(2)“ASA”:两角及其夹边对应相等的两个三角形全等;(3)“SSS”:三边对应相等的两个三角形全等;(4)“AAS”:两角及其一角对边对应相等的两个三角形全等;(5)“HL”:斜边和一直角边对应相等的两个直角三角形全等.第三页,共十四页,编辑于2023年,星期二问题2
全等三角形有什么性质?(1)全等三角形对应角相等、对应边相等;(2)全等三角形的面积、周长相等.思考:结合全等三角形的性质及全等三角形的判定,你能说说如何证明两条线段(或角)相等?第四页,共十四页,编辑于2023年,星期二讲授新课灵活选用合适的方法证明三角形全等如图,∠ABC=∠EBD,AB=BE,要使△ABC≌△EBD,则需要补充的条件为
(填一个即可).需要补充的条件为BC=BD或∠A=∠E或∠C=∠D.第五页,共十四页,编辑于2023年,星期二解析:(1)补充的条件为BC=BD,∵∠ABC=∠EBD,AB=BE,又有BC=BD,∴△ABC≌△EBD(SAS);(2)补充的条件为∠A=∠E,∵∠ABC=∠EBD,AB=BE,又有∠A=∠E,∴△ABC≌△EBD(ASA);(3)补充的条件为∠C=∠D,∵∠ABC=∠EBD,AB=BE,又有∠C=∠D,∴△ABC≌△EBD(AAS).故填BC=BD或∠A=∠E或∠C=∠D.第六页,共十四页,编辑于2023年,星期二(1)已知一边一角,可任意添加一个角的条件,用AAS或ASA判定全等;添加边的条件时只能添加夹这个角的边,用SAS判定全等.若添加另一边即这个角的对边,符合SSA的情形,不能判定三角形全等;(2)添加条件时,应结合判定图形和四种方法:SSS、SAS、ASA、AAS,注意不能是SSA的情形.方法归纳第七页,共十四页,编辑于2023年,星期二典例精析全等三角形对应边相等,那么对应边上的高有什么关系呢?ABCDA'B'C'D'例
如图,∆ABC≌∆A′B′C′,AD、A'D'分别是∆ABC和∆A′B′C′的高.求证:AD=A′D′.第八页,共十四页,编辑于2023年,星期二证明:∵∆ABC≌∆AˊBˊCˊ(已知),∴AB=A'Bˊ,∠B=∠B′(全等三角形的对应边相等,对应角相等).∵AD、A′D′分别是∆ABC、∆AˊBˊCˊ的高,∴∠ADB=∠A′D′B′=90°(垂直定义).在∆ABD和∆A′B′D′中,∠B=∠B′,(已证),∠ADB=∠A′D′B′(已证),AB=A′B′,(已证)∴∆ABD≌∆A′B′D′(AAS),∴AD=A'D'(全等三角形对应边相等).第九页,共十四页,编辑于2023年,星期二当堂练习1.如图,已知AC=DB,∠ACB=∠DBC,则有△ABC≌△
,理由是
,且有∠ABC=∠
,AB=
;ABCDDCBSASDCBDC第十页,共十四页,编辑于2023年,星期二
2.如图,在△ABC中,AB=AC,E、F分别为AB、AC上的点,且AE=AF,BF与CE相交于点O.AOFEBC(1)图中有哪些全等的三角形?△ABF≌△ACE(SAS)△EBC≌△FCB(SSS)△EBO≌△FCO(AAS)(2)图中有哪些相等的线段?(3)图中有哪些相等的角?AB=AC,BE=CF,CE=BF,AE=AF∠ABF=∠ACE,∠ABC=∠ACB,∠FBC=∠ECB,∠BEC=∠CFB,∠AEC=∠AFB,∠BOE=∠COF.第十一页,共十四页,编辑于2023年,星期二3.如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.第十二页,共十四页,编辑于2023年,星期二解:相等.证明如下:在△ABC和△ADC中,AB=AD,AC=AC,BC=DC,∴△ABC≌△ADC(SSS),∴∠DAE=∠BAE.在△ADE和△ABE中,AD=AB,∠DAE=∠BAE,AE=AE,∴△ADE≌△ABE(SAS),∴BE=DE.第十三页,共十四页,编辑于2023年,星期二判定三角形全等的思路已知两边课堂小结已知一边一角已知两角找夹角(SAS)找
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装载机用车合同(2篇)
- 第24课《愚公移山》八年级语文上册精讲同步课堂(统编版)
- 2024年吉林省长春市中考地理真题卷及答案解析
- 16.1《赤壁赋》-高一语文上学期同步备课拓展(统编版必修上册)
- 说课稿课件政治
- 西京学院《现代教育技术》2023-2024学年第一学期期末试卷
- 西京学院《企业级框架基础》2021-2022学年期末试卷
- 社区环境 课件
- 外研版必修一module2-mynewteachers(reading)课件
- 西华师范大学《装饰绘画》2022-2023学年第一学期期末试卷
- 注塑工艺卡片
- 2023年高考模拟三元思辨作文“拿得起、放得下、想得开”讲评课件
- 统编教材语文要素的落实例谈课件(新)
- DB14∕T 1217-2016 粉煤灰与煤矸石混合生态填充技术规范
- 急性化脓性腹膜炎ppt
- CQI-12特殊过程:涂装系统评估表(中文第三版)
- 300MW锅炉专业检修规程
- 新北师大版二年级上册数学练习五
- 以名师工作室为引领构建教师发展共同体ppt课件市公开课金奖市赛课一等奖课件
- 《斯坦福大学人生设计课》读书笔记PPT模板思维导图下载
- 输尿管支架管拔除术日间手术路径
评论
0/150
提交评论