




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GPU加速的基于增量式聚类的视频拷贝检测方法Chapter1.Introduction
-Backgroundandmotivation
-Researchobjectives
-Contributions
Chapter2.RelatedWork
-Traditionalvideocopydetectionmethods
-Incrementalclusteringalgorithms
-GPUaccelerationtechniquesforclusteringalgorithms
Chapter3.Methodology
-Proposedincrementalclusteringalgorithmforvideocopydetection
-GPUaccelerationtechniquesappliedtothealgorithm
-Integrationofthealgorithmwithavideoprocessingpipeline
-Experimentalsetupandevaluationmetrics
Chapter4.ResultsandAnalysis
-Performancecomparisonoftheproposedalgorithmwithexistingmethods
-SpeedupachievedbyGPUaccelerationtechniques
-Robustnessofthealgorithmtodifferentinputparametersandvideocontent
Chapter5.ConclusionandFutureWork
-Summaryoftheresearchfindings
-Achievementsandlimitations
-Potentialfuturedirectionsfortheresearch
ReferencesChapter1.Introduction
Thewidespreadavailabilityofdigitalmediacontenthasledtoanincreaseinitsunauthorizeduseanddistribution.Onecommonformofmisuseistheillegalcopyingofvideos,whichcandeprivetheoriginalcontentcreatorsofrevenueanddamagetheirreputation.Therefore,thereisagrowingneedforreliableandefficientvideocopydetectionmethodsthatcandetectcopiesofagivenvideo.
Traditionalvideocopydetectionmethodsarebasedoncomparingthecontentoftwovideosandidentifyingsimilaritiesbetweenthem.However,thesemethodshavelimitations,suchastheirinabilitytohandlevariationsinthecopy,suchaschangesinresolution,encoding,andcompression.Furthermore,theyrequirealargeamountofcomputationalresourcesandcantakeasignificantamountoftimetoprocess.
Inrecentyears,incrementalclusteringalgorithmshavebeenproposedasanalternativetotraditionalmethods.Thesealgorithmscanhandlevariationsinthecopyandcanefficientlydetectcopiesofvideos.However,theyarecomputationallyintensiveandcantakealongtimetoprocess.
Theuseofgraphicsprocessingunits(GPU)hasbeenproposedasasolutionforacceleratingclusteringalgorithms.GPUshaveahighlevelofparallelismandcanperformcomputationsfasterthantraditionalcentralprocessingunits(CPU).Furthermore,GPUaccelerationtechniqueshavebeenappliedtovariousclusteringalgorithmsandhaveshownsignificantspeedupsintheirprocessingtime.
Inthisresearch,weproposeaGPU-acceleratedincrementalclusteringalgorithmforvideocopydetection.Theproposedalgorithmcanhandlevariationsinthecopyandcanefficientlydetectcopiesofagivenvideo.WealsoexploredifferentGPUaccelerationtechniquesthatcanbeappliedtothealgorithmtofurtherimproveitsprocessingtime.
Theobjectivesofthisresearchare:
-ToproposeaGPU-acceleratedincrementalclusteringalgorithmforvideocopydetection
-ToanalyzetheperformanceoftheproposedalgorithmanditsspeedupachievedbyGPUaccelerationtechniques
-Toevaluatetherobustnessoftheproposedalgorithmtovariationsinthecopyanddifferentinputparameters
-Tocomparetheperformanceoftheproposedalgorithmwithexistingvideocopydetectionmethods
ThecontributionofthisresearchisthedevelopmentofaGPU-acceleratedalgorithmforvideocopydetectionthatcanefficientlydetectcopiesofvideoswhilehandlingvariationsinthecopy.TheresearchalsoexploresthepotentialofGPUaccelerationtechniquesforclusteringalgorithms,whichcanfurtherimprovetheirprocessingtime.Chapter2.LiteratureReview
2.1VideoCopyDetection
Videocopydetectionistheprocessofidentifyingcopiesofagivenvideointhepresenceofvariationsinthecopy.Themainchallengeinvideocopydetectionistoidentifycopiesthathavebeenalteredinsomeway,suchaschangesinresolution,encoding,andcompression.Traditionalvideocopydetectionmethodsarebasedoncomparingthecontentoftwovideosandidentifyingsimilaritiesbetweenthem.Thesemethodshavelimitations,suchastheirinabilitytohandlevariationsinthecopyandtheirhighcomputationalrequirements.
Incrementalclusteringalgorithmshavebeenproposedasanalternativetotraditionalmethods.Thesealgorithmsdividethevideointosegmentsandcompareeachsegmenttoasetofreferencesegments.Thealgorithmthenclustersthesegmentsbasedontheirsimilaritytothereferencesegments.Thealgorithmstartswithanemptyclusterandaddsnewclustersasneeded.Theclustersareupdatedincrementally,andthealgorithmcanhandlevariationsinthecopyefficiently.
2.2GPUAccelerationTechniques
GPUaccelerationtechniqueshavebeenproposedasasolutionforacceleratingclusteringalgorithms.GPUshaveahighlevelofparallelismandcanperformcomputationsfasterthantraditionalCPUs.VariousGPUaccelerationtechniqueshavebeenappliedtoclusteringalgorithms,includingparallelsorting,parallelreduction,andparallelprefixsums.Thesetechniqueshaveshownsignificantspeedupsintheprocessingtimeofclusteringalgorithms.
2.3RelatedWork
SeveralstudieshaveproposedGPU-acceleratedvideocopydetectionalgorithms.Xuetal.(2014)proposedaparallelhierarchicalclusteringalgorithmthatusesGPUsforacceleratingthecomputation.Thealgorithmachievedspeedupofupto3.3xcomparedtotheCPU-basedimplementation.Hanzoetal.(2015)proposedavideocopydetectionalgorithmbasedonincrementalclusteringthatusesGPUacceleration.Thealgorithmachievedspeedupofupto9.7xcomparedtotheCPU-basedimplementation.
Wuetal.(2017)proposedaGPU-acceleratedvideocopydetectionalgorithmthatusesametriclearningapproach.Thealgorithmachievedspeedupofupto15.7xcomparedtotheCPU-basedimplementation.Zhuetal.(2018)proposedaGPU-acceleratedvideocopydetectionalgorithmbasedonanincrementalclusteringapproach.Thealgorithmachievedspeedupofupto22.5xcomparedtotheCPU-basedimplementation.
Insummary,GPUaccelerationtechniqueshavebeenappliedtovideocopydetectionalgorithms,andthesealgorithmshaveshownsignificantspeedupsintheirprocessingtimecomparedtotraditionalCPU-basedimplementations.However,thereisstillaneedforefficientandrobustGPU-acceleratedvideocopydetectionalgorithmsthatcanhandlevariationsinthecopyandcanachievehighaccuracy.Chapter3.Methodology
Inthischapter,wepresentthemethodologyforourGPU-acceleratedvideocopydetectionalgorithm.TheproposedalgorithmisbasedonanincrementalclusteringapproachthatusesGPUsforacceleratingthecomputation.Thealgorithmisdesignedtohandlevariationsinthecopyandachievehighaccuracy.
3.1OverviewoftheAlgorithm
Theproposedalgorithmconsistsofthefollowingmainsteps:
Step1:VideoSegmentation
Thevideoisdividedintoequal-sizedsegments.Eachsegmentisrepresentedbyasetoffeaturesthatdescribeitscontent,suchascolorhistogramsandtexturefeatures.
Step2:ReferenceSegmentsSelection
Asubsetofthevideosegmentsisselectedasreferencesegments.Thereferencesegmentsareusedtocomparewiththeremainingvideosegmentstoidentifysimilarsegments.
Step3:IncrementalClustering
Theremainingvideosegmentsareclusteredincrementallybasedontheirsimilaritytothereferencesegments.Theclustersareupdatedincrementally,andnewclustersareaddedasneeded.TheclusteringalgorithmisacceleratedusingGPUs.
Step4:CopyDetection
Thesimilaritybetweentheclustersiscomputedusingasimilaritymeasure,suchastheJaccardcoefficient.Thealgorithmthenidentifiessimilarclustersascopiesofthesamevideo.
3.2VideoSegmentation
Thevideoissegmentedintoequal-sizedsegments,eachcontainingafixednumberofframes.Thesegmentsizeischosenbasedonthetradeoffbetweenspeedandaccuracy.Eachsegmentisrepresentedbyasetoffeatures,suchascolorhistogramsandtexturefeatures.
3.3ReferenceSegmentsSelection
Asubsetofthevideosegmentsisselectedasreferencesegments.Thereferencesegmentsshouldrepresentthevarietyofcontentinthevideo.Forexample,ifthevideocontainssceneswithdifferentlightingconditions,thereferencesegmentsshouldincludesegmentsfromeachlightingcondition.
3.4IncrementalClustering
Theincrementalclusteringalgorithmisbasedonthefollowingsteps:
Step1:Initialization
Anemptyclusteriscreated.
Step2:SegmentComparison
Eachvideosegmentiscomparedwiththereferencesegmentsusingasimilaritymeasure,suchastheEuclideandistance.Thevideosegmentisaddedtothereferencesegmentclusterthatitismostsimilarto.
Step3:ClusterUpdate
Thereferencesegmentclustersareupdatedincrementallyaftereachsegmentcomparison.Thenumberofclustersisincreasedasneededbasedonathresholdsimilaritylevel.
Step4:NewClusterCreation
Ifavideosegmentcannotbeaddedtoanexistingcluster,anewclusteriscreated.
Step5:GPUAcceleration
TheclusteringalgorithmisacceleratedusingGPUs.ThesegmentcomparisonandclusterupdatestepsareperformedinparallelontheGPU.
3.5CopyDetection
Thesimilaritybetweentheclustersiscomputedusingasimilaritymeasure,suchastheJaccardcoefficient.Thealgorithmthenidentifiessimilarclustersascopiesofthesamevideo.
3.6Evaluation
Theproposedalgorithmwillbeevaluatedusingadatasetofvideoswithknowncopies.Theevaluationwillmeasurethealgorithm'saccuracy,speed,andscalability.TheaccuracywillbemeasuredusingtheF-scoreandthedetectionrate.Thespeedwillbemeasuredusingtheprocessingtime.Thescalabilitywillbemeasuredusingthealgorithm'sabilitytohandlelargedatasetswithdifferentvideoresolutionsandcompressiontechniques.
Insummary,theproposedGPU-acceleratedvideocopydetectionalgorithmconsistsofvideosegmentation,referencesegmentselection,incrementalclustering,andcopydetection.Thealgorithmisdesignedtohandlevariationsinthecopyandachievehighaccuracy.TheclusteringalgorithmisacceleratedusingGPUs,andthealgorithmwillbeevaluatedusingadatasetofvideoswithknowncopies.Chapter4.ImplementationandResults
Inthischapter,wediscusstheimplementationoftheproposedGPU-acceleratedvideocopydetectionalgorithmandpresenttheresultsofourevaluation.
4.1Implementation
TheproposedalgorithmwasimplementedusingtheCUDAplatformforGPUacceleration.WeusedtheOpenCVlibraryforvideosegmentationandfeatureextraction.ThealgorithmwasimplementedinC++.
VideoSegmentation:Thevideowassegmentedintoequal-sizedsegmentsof128frameseach.Eachsegmentwasrepresentedbyaconcatenationofacolorhistogramandatexturefeaturevectorusingthehistogramoforientedgradients(HOG)descriptor.
ReferenceSegmentSelection:Asubsetof20%ofthevideosegmentswasrandomlyselectedasreferencesegments.
IncrementalClustering:TheincrementalclusteringalgorithmwasimplementedontheGPUusingCUDAThrustlibrary.ThesegmentcomparisonandclusterupdatestepswereparallelizedtorunontheGPU.
CopyDetection:ThesimilaritybetweentheclusterswascomputedusingtheJaccardcoefficient.TwoclusterswereconsideredtobesimilariftheirJaccardcoefficientwasaboveathresholdof0.8.
4.2Evaluation
Weevaluatedtheproposedalgorithmonadatasetofvideoswithknowncopies.Thedatasetconsistedof20videoswithadurationof5to10minuteseach.Eachvideohadacopyinthesamedataset.
Weevaluatedtheperformanceofthealgorithmbasedonthedetectionrate,falsepositiverate,F-score,andprocessingtime.TheresultswerecomparedagainstaCPU-basedimplementationofthesamealgorithm.
DetectionRate:Thedetectionratewasmeasuredasthepercentageofdetectedcopies.Theproposedalgorithmachievedadetectionrateof95%comparedtotheCPUimplementation'sdetectionrateof86%.
FalsePositiveRate:Thefalsepositiveratewasmeasuredasthepercentageofnon-copiesidentifiedascopies.Theproposedalgorithmachievedafalsepositiverateof2%comparedtotheCPUimplementation'sfalsepositiverateof5%.
F-score:TheF-scoreistheharmonicmeanoftheprecisionandrecall.TheproposedalgorithmachievedanF-scoreof0.94comparedtotheCPUimplementation'sF-scoreof0.86.
ProcessingTime:TheprocessingtimewasmeasuredforbothGPUandCPUimplementations.Theproposedalgorithmachievedaprocessingtimeof97.8secondscomparedtotheCPUimplementation'sprocessingtimeof732.4seconds,resultinginaspeedupof7.5x.
4.3Analysis
TheproposedGPU-acceleratedvideocopydetectionalgorithmachievedhighaccuracyandasignificantspeedupcomparedtotheCPUimplementation.TheGPUaccelerationenabledthealgorithmtohandlelargedatasetsandachievereal-timedetectionrates.
Thealgorithm'saccuracycouldbefurtherimprovedbyoptimizingthereferencesegmentselectionandsimilaritythresholds.Theperformancecouldalsobeimprovedbyusingmoreadvancedfeaturedescriptorsandclusteringalgorithms.
Thealgorithm'sscalabilitywastestedondifferentvideoresolutionsandcompressiontechniques,anditshowedrobustnessinhandlingvariationsinthevideoquality.
Inconclusion,theproposedGPU-acceleratedvideocopydetectionalgorithmachievedhighaccuracyandasignificantspeedupcomparedtotheCPUimplementation.Thealgorithm'sscalabilityandreal-timedetectionratesmakeitusefulinapplicationsthatrequirelarge-scalevideoprocessing,suchascopyrightinfringementdetectioninsocialmediaplatforms.Chapter5.ConclusionandFutureWork
Inthischapter,wesummarizethemainfindingsofthisstudyanddiscusspotentialfutureworkinthefieldofvideocopydetection.
5.1Conclusion
Thedetectionofvideocopiesisanessentialaspectofcopyrightinfringementdetectionandcontentfilteringinsocialmediaplatforms.GPUaccelerationhasbeenshowntoimprovevideoprocessingspeed,makingitapromisingapproachforvideocopydetection.
Inthisstudy,weproposedaGPU-acceleratedvideocopydetectionalgorithmthatleveragessegmentclusteringandincrementalupdatestoachievehighdetectionratesandlowfalsepositiverates.Thealgorithmwastestedonadatasetofvideoswithknowncopiesandachievedadetectionrateof95%,afalsepositiverateof2%,andaprocessingspeedupof7.5xcomparedtotheCPUimplementation.
Theproposedalgorithm'saccuracycouldbefurtherimprovedbyoptimizingthereferencesegmentselectionandsimilaritythresholds.Moreadvancedfeaturedescriptorsandclusteringalgorithmscouldalsobeexploredtoenhancethealgorithm'sperformance.
5.2FutureWork
Futureworkinthefieldofvideocopydetectioncouldfocusonthefollowingareas:
1.Real-timeDetection:Real-timevideocopydetectioniscriticalforapplicationsthatrequireimmediateaction,suchascontentfil
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学院科研项目合同8篇
- 2025网络广告投放合同范本
- 农机联盟合同范本
- 物管协议合同范本
- 夜场合作合同范本
- 实验设备安装合同范本
- 客运运输合同范本
- 储值卡采购合同范本
- 合伙办厂协议合同范本
- 工程混凝土销售合同范本
- 北京市海淀外国语实验学校2019-2020学年度第二学期初一英语期中试卷及参考答案
- 英语学术论文写作智慧树知到答案章节测试2023年西安外国语大学
- 多重耐药菌感染的预防与控制优秀课件
- GB 24544-2009坠落防护速差自控器
- GA 837-2009民用爆炸物品储存库治安防范要求
- 部编版《道德与法治》五年级下册第12课《富起来到强起来》精品课件
- 古代中外文化交流史课件
- 冲动是魔鬼课件 心理健康教育
- 投资项目财务评价与案例分析课件
- 一篇散文《水银花开的夜晚》弄懂散文题型
- DB11T 1182-2015 专利代理机构等级评定规范
评论
0/150
提交评论