




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GPU加速的基于增量式聚类的视频拷贝检测方法Chapter1.Introduction
-Backgroundandmotivation
-Researchobjectives
-Contributions
Chapter2.RelatedWork
-Traditionalvideocopydetectionmethods
-Incrementalclusteringalgorithms
-GPUaccelerationtechniquesforclusteringalgorithms
Chapter3.Methodology
-Proposedincrementalclusteringalgorithmforvideocopydetection
-GPUaccelerationtechniquesappliedtothealgorithm
-Integrationofthealgorithmwithavideoprocessingpipeline
-Experimentalsetupandevaluationmetrics
Chapter4.ResultsandAnalysis
-Performancecomparisonoftheproposedalgorithmwithexistingmethods
-SpeedupachievedbyGPUaccelerationtechniques
-Robustnessofthealgorithmtodifferentinputparametersandvideocontent
Chapter5.ConclusionandFutureWork
-Summaryoftheresearchfindings
-Achievementsandlimitations
-Potentialfuturedirectionsfortheresearch
ReferencesChapter1.Introduction
Thewidespreadavailabilityofdigitalmediacontenthasledtoanincreaseinitsunauthorizeduseanddistribution.Onecommonformofmisuseistheillegalcopyingofvideos,whichcandeprivetheoriginalcontentcreatorsofrevenueanddamagetheirreputation.Therefore,thereisagrowingneedforreliableandefficientvideocopydetectionmethodsthatcandetectcopiesofagivenvideo.
Traditionalvideocopydetectionmethodsarebasedoncomparingthecontentoftwovideosandidentifyingsimilaritiesbetweenthem.However,thesemethodshavelimitations,suchastheirinabilitytohandlevariationsinthecopy,suchaschangesinresolution,encoding,andcompression.Furthermore,theyrequirealargeamountofcomputationalresourcesandcantakeasignificantamountoftimetoprocess.
Inrecentyears,incrementalclusteringalgorithmshavebeenproposedasanalternativetotraditionalmethods.Thesealgorithmscanhandlevariationsinthecopyandcanefficientlydetectcopiesofvideos.However,theyarecomputationallyintensiveandcantakealongtimetoprocess.
Theuseofgraphicsprocessingunits(GPU)hasbeenproposedasasolutionforacceleratingclusteringalgorithms.GPUshaveahighlevelofparallelismandcanperformcomputationsfasterthantraditionalcentralprocessingunits(CPU).Furthermore,GPUaccelerationtechniqueshavebeenappliedtovariousclusteringalgorithmsandhaveshownsignificantspeedupsintheirprocessingtime.
Inthisresearch,weproposeaGPU-acceleratedincrementalclusteringalgorithmforvideocopydetection.Theproposedalgorithmcanhandlevariationsinthecopyandcanefficientlydetectcopiesofagivenvideo.WealsoexploredifferentGPUaccelerationtechniquesthatcanbeappliedtothealgorithmtofurtherimproveitsprocessingtime.
Theobjectivesofthisresearchare:
-ToproposeaGPU-acceleratedincrementalclusteringalgorithmforvideocopydetection
-ToanalyzetheperformanceoftheproposedalgorithmanditsspeedupachievedbyGPUaccelerationtechniques
-Toevaluatetherobustnessoftheproposedalgorithmtovariationsinthecopyanddifferentinputparameters
-Tocomparetheperformanceoftheproposedalgorithmwithexistingvideocopydetectionmethods
ThecontributionofthisresearchisthedevelopmentofaGPU-acceleratedalgorithmforvideocopydetectionthatcanefficientlydetectcopiesofvideoswhilehandlingvariationsinthecopy.TheresearchalsoexploresthepotentialofGPUaccelerationtechniquesforclusteringalgorithms,whichcanfurtherimprovetheirprocessingtime.Chapter2.LiteratureReview
2.1VideoCopyDetection
Videocopydetectionistheprocessofidentifyingcopiesofagivenvideointhepresenceofvariationsinthecopy.Themainchallengeinvideocopydetectionistoidentifycopiesthathavebeenalteredinsomeway,suchaschangesinresolution,encoding,andcompression.Traditionalvideocopydetectionmethodsarebasedoncomparingthecontentoftwovideosandidentifyingsimilaritiesbetweenthem.Thesemethodshavelimitations,suchastheirinabilitytohandlevariationsinthecopyandtheirhighcomputationalrequirements.
Incrementalclusteringalgorithmshavebeenproposedasanalternativetotraditionalmethods.Thesealgorithmsdividethevideointosegmentsandcompareeachsegmenttoasetofreferencesegments.Thealgorithmthenclustersthesegmentsbasedontheirsimilaritytothereferencesegments.Thealgorithmstartswithanemptyclusterandaddsnewclustersasneeded.Theclustersareupdatedincrementally,andthealgorithmcanhandlevariationsinthecopyefficiently.
2.2GPUAccelerationTechniques
GPUaccelerationtechniqueshavebeenproposedasasolutionforacceleratingclusteringalgorithms.GPUshaveahighlevelofparallelismandcanperformcomputationsfasterthantraditionalCPUs.VariousGPUaccelerationtechniqueshavebeenappliedtoclusteringalgorithms,includingparallelsorting,parallelreduction,andparallelprefixsums.Thesetechniqueshaveshownsignificantspeedupsintheprocessingtimeofclusteringalgorithms.
2.3RelatedWork
SeveralstudieshaveproposedGPU-acceleratedvideocopydetectionalgorithms.Xuetal.(2014)proposedaparallelhierarchicalclusteringalgorithmthatusesGPUsforacceleratingthecomputation.Thealgorithmachievedspeedupofupto3.3xcomparedtotheCPU-basedimplementation.Hanzoetal.(2015)proposedavideocopydetectionalgorithmbasedonincrementalclusteringthatusesGPUacceleration.Thealgorithmachievedspeedupofupto9.7xcomparedtotheCPU-basedimplementation.
Wuetal.(2017)proposedaGPU-acceleratedvideocopydetectionalgorithmthatusesametriclearningapproach.Thealgorithmachievedspeedupofupto15.7xcomparedtotheCPU-basedimplementation.Zhuetal.(2018)proposedaGPU-acceleratedvideocopydetectionalgorithmbasedonanincrementalclusteringapproach.Thealgorithmachievedspeedupofupto22.5xcomparedtotheCPU-basedimplementation.
Insummary,GPUaccelerationtechniqueshavebeenappliedtovideocopydetectionalgorithms,andthesealgorithmshaveshownsignificantspeedupsintheirprocessingtimecomparedtotraditionalCPU-basedimplementations.However,thereisstillaneedforefficientandrobustGPU-acceleratedvideocopydetectionalgorithmsthatcanhandlevariationsinthecopyandcanachievehighaccuracy.Chapter3.Methodology
Inthischapter,wepresentthemethodologyforourGPU-acceleratedvideocopydetectionalgorithm.TheproposedalgorithmisbasedonanincrementalclusteringapproachthatusesGPUsforacceleratingthecomputation.Thealgorithmisdesignedtohandlevariationsinthecopyandachievehighaccuracy.
3.1OverviewoftheAlgorithm
Theproposedalgorithmconsistsofthefollowingmainsteps:
Step1:VideoSegmentation
Thevideoisdividedintoequal-sizedsegments.Eachsegmentisrepresentedbyasetoffeaturesthatdescribeitscontent,suchascolorhistogramsandtexturefeatures.
Step2:ReferenceSegmentsSelection
Asubsetofthevideosegmentsisselectedasreferencesegments.Thereferencesegmentsareusedtocomparewiththeremainingvideosegmentstoidentifysimilarsegments.
Step3:IncrementalClustering
Theremainingvideosegmentsareclusteredincrementallybasedontheirsimilaritytothereferencesegments.Theclustersareupdatedincrementally,andnewclustersareaddedasneeded.TheclusteringalgorithmisacceleratedusingGPUs.
Step4:CopyDetection
Thesimilaritybetweentheclustersiscomputedusingasimilaritymeasure,suchastheJaccardcoefficient.Thealgorithmthenidentifiessimilarclustersascopiesofthesamevideo.
3.2VideoSegmentation
Thevideoissegmentedintoequal-sizedsegments,eachcontainingafixednumberofframes.Thesegmentsizeischosenbasedonthetradeoffbetweenspeedandaccuracy.Eachsegmentisrepresentedbyasetoffeatures,suchascolorhistogramsandtexturefeatures.
3.3ReferenceSegmentsSelection
Asubsetofthevideosegmentsisselectedasreferencesegments.Thereferencesegmentsshouldrepresentthevarietyofcontentinthevideo.Forexample,ifthevideocontainssceneswithdifferentlightingconditions,thereferencesegmentsshouldincludesegmentsfromeachlightingcondition.
3.4IncrementalClustering
Theincrementalclusteringalgorithmisbasedonthefollowingsteps:
Step1:Initialization
Anemptyclusteriscreated.
Step2:SegmentComparison
Eachvideosegmentiscomparedwiththereferencesegmentsusingasimilaritymeasure,suchastheEuclideandistance.Thevideosegmentisaddedtothereferencesegmentclusterthatitismostsimilarto.
Step3:ClusterUpdate
Thereferencesegmentclustersareupdatedincrementallyaftereachsegmentcomparison.Thenumberofclustersisincreasedasneededbasedonathresholdsimilaritylevel.
Step4:NewClusterCreation
Ifavideosegmentcannotbeaddedtoanexistingcluster,anewclusteriscreated.
Step5:GPUAcceleration
TheclusteringalgorithmisacceleratedusingGPUs.ThesegmentcomparisonandclusterupdatestepsareperformedinparallelontheGPU.
3.5CopyDetection
Thesimilaritybetweentheclustersiscomputedusingasimilaritymeasure,suchastheJaccardcoefficient.Thealgorithmthenidentifiessimilarclustersascopiesofthesamevideo.
3.6Evaluation
Theproposedalgorithmwillbeevaluatedusingadatasetofvideoswithknowncopies.Theevaluationwillmeasurethealgorithm'saccuracy,speed,andscalability.TheaccuracywillbemeasuredusingtheF-scoreandthedetectionrate.Thespeedwillbemeasuredusingtheprocessingtime.Thescalabilitywillbemeasuredusingthealgorithm'sabilitytohandlelargedatasetswithdifferentvideoresolutionsandcompressiontechniques.
Insummary,theproposedGPU-acceleratedvideocopydetectionalgorithmconsistsofvideosegmentation,referencesegmentselection,incrementalclustering,andcopydetection.Thealgorithmisdesignedtohandlevariationsinthecopyandachievehighaccuracy.TheclusteringalgorithmisacceleratedusingGPUs,andthealgorithmwillbeevaluatedusingadatasetofvideoswithknowncopies.Chapter4.ImplementationandResults
Inthischapter,wediscusstheimplementationoftheproposedGPU-acceleratedvideocopydetectionalgorithmandpresenttheresultsofourevaluation.
4.1Implementation
TheproposedalgorithmwasimplementedusingtheCUDAplatformforGPUacceleration.WeusedtheOpenCVlibraryforvideosegmentationandfeatureextraction.ThealgorithmwasimplementedinC++.
VideoSegmentation:Thevideowassegmentedintoequal-sizedsegmentsof128frameseach.Eachsegmentwasrepresentedbyaconcatenationofacolorhistogramandatexturefeaturevectorusingthehistogramoforientedgradients(HOG)descriptor.
ReferenceSegmentSelection:Asubsetof20%ofthevideosegmentswasrandomlyselectedasreferencesegments.
IncrementalClustering:TheincrementalclusteringalgorithmwasimplementedontheGPUusingCUDAThrustlibrary.ThesegmentcomparisonandclusterupdatestepswereparallelizedtorunontheGPU.
CopyDetection:ThesimilaritybetweentheclusterswascomputedusingtheJaccardcoefficient.TwoclusterswereconsideredtobesimilariftheirJaccardcoefficientwasaboveathresholdof0.8.
4.2Evaluation
Weevaluatedtheproposedalgorithmonadatasetofvideoswithknowncopies.Thedatasetconsistedof20videoswithadurationof5to10minuteseach.Eachvideohadacopyinthesamedataset.
Weevaluatedtheperformanceofthealgorithmbasedonthedetectionrate,falsepositiverate,F-score,andprocessingtime.TheresultswerecomparedagainstaCPU-basedimplementationofthesamealgorithm.
DetectionRate:Thedetectionratewasmeasuredasthepercentageofdetectedcopies.Theproposedalgorithmachievedadetectionrateof95%comparedtotheCPUimplementation'sdetectionrateof86%.
FalsePositiveRate:Thefalsepositiveratewasmeasuredasthepercentageofnon-copiesidentifiedascopies.Theproposedalgorithmachievedafalsepositiverateof2%comparedtotheCPUimplementation'sfalsepositiverateof5%.
F-score:TheF-scoreistheharmonicmeanoftheprecisionandrecall.TheproposedalgorithmachievedanF-scoreof0.94comparedtotheCPUimplementation'sF-scoreof0.86.
ProcessingTime:TheprocessingtimewasmeasuredforbothGPUandCPUimplementations.Theproposedalgorithmachievedaprocessingtimeof97.8secondscomparedtotheCPUimplementation'sprocessingtimeof732.4seconds,resultinginaspeedupof7.5x.
4.3Analysis
TheproposedGPU-acceleratedvideocopydetectionalgorithmachievedhighaccuracyandasignificantspeedupcomparedtotheCPUimplementation.TheGPUaccelerationenabledthealgorithmtohandlelargedatasetsandachievereal-timedetectionrates.
Thealgorithm'saccuracycouldbefurtherimprovedbyoptimizingthereferencesegmentselectionandsimilaritythresholds.Theperformancecouldalsobeimprovedbyusingmoreadvancedfeaturedescriptorsandclusteringalgorithms.
Thealgorithm'sscalabilitywastestedondifferentvideoresolutionsandcompressiontechniques,anditshowedrobustnessinhandlingvariationsinthevideoquality.
Inconclusion,theproposedGPU-acceleratedvideocopydetectionalgorithmachievedhighaccuracyandasignificantspeedupcomparedtotheCPUimplementation.Thealgorithm'sscalabilityandreal-timedetectionratesmakeitusefulinapplicationsthatrequirelarge-scalevideoprocessing,suchascopyrightinfringementdetectioninsocialmediaplatforms.Chapter5.ConclusionandFutureWork
Inthischapter,wesummarizethemainfindingsofthisstudyanddiscusspotentialfutureworkinthefieldofvideocopydetection.
5.1Conclusion
Thedetectionofvideocopiesisanessentialaspectofcopyrightinfringementdetectionandcontentfilteringinsocialmediaplatforms.GPUaccelerationhasbeenshowntoimprovevideoprocessingspeed,makingitapromisingapproachforvideocopydetection.
Inthisstudy,weproposedaGPU-acceleratedvideocopydetectionalgorithmthatleveragessegmentclusteringandincrementalupdatestoachievehighdetectionratesandlowfalsepositiverates.Thealgorithmwastestedonadatasetofvideoswithknowncopiesandachievedadetectionrateof95%,afalsepositiverateof2%,andaprocessingspeedupof7.5xcomparedtotheCPUimplementation.
Theproposedalgorithm'saccuracycouldbefurtherimprovedbyoptimizingthereferencesegmentselectionandsimilaritythresholds.Moreadvancedfeaturedescriptorsandclusteringalgorithmscouldalsobeexploredtoenhancethealgorithm'sperformance.
5.2FutureWork
Futureworkinthefieldofvideocopydetectioncouldfocusonthefollowingareas:
1.Real-timeDetection:Real-timevideocopydetectioniscriticalforapplicationsthatrequireimmediateaction,suchascontentfil
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业职员出差管理办法
- 企业培训薪酬管理办法
- 会议经费管理办法安徽
- 乌海苗木绿化管理办法
- 乡镇郊野公园管理办法
- 企业房屋租入管理办法
- 企业发票如何管理办法
- 企业帐户资金管理办法
- 企业集群登记管理办法
- 机器学习辅助查询优化-洞察及研究
- 供电系统安全培训
- 箱变吊装方案(3篇)
- 直播电商结算管理制度
- 吊篮作业考试题及答案
- 儿童腺病毒肺炎课件
- 芜湖凤鸣控股集团(筹)2024年招聘工作人员笔试考点考试题库与答案
- 2025春季学期国开电大本科《经济学(本)》一平台在线形考(形考任务1至6)试题及答案
- 2024年空中乘务专业人才培养方案调研报告
- CJ/T 30-2013热电式燃具熄火保护装置
- 2025贵州省水利投资(集团)有限责任公司招聘84人笔试备考题库附答案详解(巩固)
- 调岗协议书合同补充
评论
0/150
提交评论