版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GPU加速的基于增量式聚类的视频拷贝检测方法Chapter1.Introduction
-Backgroundandmotivation
-Researchobjectives
-Contributions
Chapter2.RelatedWork
-Traditionalvideocopydetectionmethods
-Incrementalclusteringalgorithms
-GPUaccelerationtechniquesforclusteringalgorithms
Chapter3.Methodology
-Proposedincrementalclusteringalgorithmforvideocopydetection
-GPUaccelerationtechniquesappliedtothealgorithm
-Integrationofthealgorithmwithavideoprocessingpipeline
-Experimentalsetupandevaluationmetrics
Chapter4.ResultsandAnalysis
-Performancecomparisonoftheproposedalgorithmwithexistingmethods
-SpeedupachievedbyGPUaccelerationtechniques
-Robustnessofthealgorithmtodifferentinputparametersandvideocontent
Chapter5.ConclusionandFutureWork
-Summaryoftheresearchfindings
-Achievementsandlimitations
-Potentialfuturedirectionsfortheresearch
ReferencesChapter1.Introduction
Thewidespreadavailabilityofdigitalmediacontenthasledtoanincreaseinitsunauthorizeduseanddistribution.Onecommonformofmisuseistheillegalcopyingofvideos,whichcandeprivetheoriginalcontentcreatorsofrevenueanddamagetheirreputation.Therefore,thereisagrowingneedforreliableandefficientvideocopydetectionmethodsthatcandetectcopiesofagivenvideo.
Traditionalvideocopydetectionmethodsarebasedoncomparingthecontentoftwovideosandidentifyingsimilaritiesbetweenthem.However,thesemethodshavelimitations,suchastheirinabilitytohandlevariationsinthecopy,suchaschangesinresolution,encoding,andcompression.Furthermore,theyrequirealargeamountofcomputationalresourcesandcantakeasignificantamountoftimetoprocess.
Inrecentyears,incrementalclusteringalgorithmshavebeenproposedasanalternativetotraditionalmethods.Thesealgorithmscanhandlevariationsinthecopyandcanefficientlydetectcopiesofvideos.However,theyarecomputationallyintensiveandcantakealongtimetoprocess.
Theuseofgraphicsprocessingunits(GPU)hasbeenproposedasasolutionforacceleratingclusteringalgorithms.GPUshaveahighlevelofparallelismandcanperformcomputationsfasterthantraditionalcentralprocessingunits(CPU).Furthermore,GPUaccelerationtechniqueshavebeenappliedtovariousclusteringalgorithmsandhaveshownsignificantspeedupsintheirprocessingtime.
Inthisresearch,weproposeaGPU-acceleratedincrementalclusteringalgorithmforvideocopydetection.Theproposedalgorithmcanhandlevariationsinthecopyandcanefficientlydetectcopiesofagivenvideo.WealsoexploredifferentGPUaccelerationtechniquesthatcanbeappliedtothealgorithmtofurtherimproveitsprocessingtime.
Theobjectivesofthisresearchare:
-ToproposeaGPU-acceleratedincrementalclusteringalgorithmforvideocopydetection
-ToanalyzetheperformanceoftheproposedalgorithmanditsspeedupachievedbyGPUaccelerationtechniques
-Toevaluatetherobustnessoftheproposedalgorithmtovariationsinthecopyanddifferentinputparameters
-Tocomparetheperformanceoftheproposedalgorithmwithexistingvideocopydetectionmethods
ThecontributionofthisresearchisthedevelopmentofaGPU-acceleratedalgorithmforvideocopydetectionthatcanefficientlydetectcopiesofvideoswhilehandlingvariationsinthecopy.TheresearchalsoexploresthepotentialofGPUaccelerationtechniquesforclusteringalgorithms,whichcanfurtherimprovetheirprocessingtime.Chapter2.LiteratureReview
2.1VideoCopyDetection
Videocopydetectionistheprocessofidentifyingcopiesofagivenvideointhepresenceofvariationsinthecopy.Themainchallengeinvideocopydetectionistoidentifycopiesthathavebeenalteredinsomeway,suchaschangesinresolution,encoding,andcompression.Traditionalvideocopydetectionmethodsarebasedoncomparingthecontentoftwovideosandidentifyingsimilaritiesbetweenthem.Thesemethodshavelimitations,suchastheirinabilitytohandlevariationsinthecopyandtheirhighcomputationalrequirements.
Incrementalclusteringalgorithmshavebeenproposedasanalternativetotraditionalmethods.Thesealgorithmsdividethevideointosegmentsandcompareeachsegmenttoasetofreferencesegments.Thealgorithmthenclustersthesegmentsbasedontheirsimilaritytothereferencesegments.Thealgorithmstartswithanemptyclusterandaddsnewclustersasneeded.Theclustersareupdatedincrementally,andthealgorithmcanhandlevariationsinthecopyefficiently.
2.2GPUAccelerationTechniques
GPUaccelerationtechniqueshavebeenproposedasasolutionforacceleratingclusteringalgorithms.GPUshaveahighlevelofparallelismandcanperformcomputationsfasterthantraditionalCPUs.VariousGPUaccelerationtechniqueshavebeenappliedtoclusteringalgorithms,includingparallelsorting,parallelreduction,andparallelprefixsums.Thesetechniqueshaveshownsignificantspeedupsintheprocessingtimeofclusteringalgorithms.
2.3RelatedWork
SeveralstudieshaveproposedGPU-acceleratedvideocopydetectionalgorithms.Xuetal.(2014)proposedaparallelhierarchicalclusteringalgorithmthatusesGPUsforacceleratingthecomputation.Thealgorithmachievedspeedupofupto3.3xcomparedtotheCPU-basedimplementation.Hanzoetal.(2015)proposedavideocopydetectionalgorithmbasedonincrementalclusteringthatusesGPUacceleration.Thealgorithmachievedspeedupofupto9.7xcomparedtotheCPU-basedimplementation.
Wuetal.(2017)proposedaGPU-acceleratedvideocopydetectionalgorithmthatusesametriclearningapproach.Thealgorithmachievedspeedupofupto15.7xcomparedtotheCPU-basedimplementation.Zhuetal.(2018)proposedaGPU-acceleratedvideocopydetectionalgorithmbasedonanincrementalclusteringapproach.Thealgorithmachievedspeedupofupto22.5xcomparedtotheCPU-basedimplementation.
Insummary,GPUaccelerationtechniqueshavebeenappliedtovideocopydetectionalgorithms,andthesealgorithmshaveshownsignificantspeedupsintheirprocessingtimecomparedtotraditionalCPU-basedimplementations.However,thereisstillaneedforefficientandrobustGPU-acceleratedvideocopydetectionalgorithmsthatcanhandlevariationsinthecopyandcanachievehighaccuracy.Chapter3.Methodology
Inthischapter,wepresentthemethodologyforourGPU-acceleratedvideocopydetectionalgorithm.TheproposedalgorithmisbasedonanincrementalclusteringapproachthatusesGPUsforacceleratingthecomputation.Thealgorithmisdesignedtohandlevariationsinthecopyandachievehighaccuracy.
3.1OverviewoftheAlgorithm
Theproposedalgorithmconsistsofthefollowingmainsteps:
Step1:VideoSegmentation
Thevideoisdividedintoequal-sizedsegments.Eachsegmentisrepresentedbyasetoffeaturesthatdescribeitscontent,suchascolorhistogramsandtexturefeatures.
Step2:ReferenceSegmentsSelection
Asubsetofthevideosegmentsisselectedasreferencesegments.Thereferencesegmentsareusedtocomparewiththeremainingvideosegmentstoidentifysimilarsegments.
Step3:IncrementalClustering
Theremainingvideosegmentsareclusteredincrementallybasedontheirsimilaritytothereferencesegments.Theclustersareupdatedincrementally,andnewclustersareaddedasneeded.TheclusteringalgorithmisacceleratedusingGPUs.
Step4:CopyDetection
Thesimilaritybetweentheclustersiscomputedusingasimilaritymeasure,suchastheJaccardcoefficient.Thealgorithmthenidentifiessimilarclustersascopiesofthesamevideo.
3.2VideoSegmentation
Thevideoissegmentedintoequal-sizedsegments,eachcontainingafixednumberofframes.Thesegmentsizeischosenbasedonthetradeoffbetweenspeedandaccuracy.Eachsegmentisrepresentedbyasetoffeatures,suchascolorhistogramsandtexturefeatures.
3.3ReferenceSegmentsSelection
Asubsetofthevideosegmentsisselectedasreferencesegments.Thereferencesegmentsshouldrepresentthevarietyofcontentinthevideo.Forexample,ifthevideocontainssceneswithdifferentlightingconditions,thereferencesegmentsshouldincludesegmentsfromeachlightingcondition.
3.4IncrementalClustering
Theincrementalclusteringalgorithmisbasedonthefollowingsteps:
Step1:Initialization
Anemptyclusteriscreated.
Step2:SegmentComparison
Eachvideosegmentiscomparedwiththereferencesegmentsusingasimilaritymeasure,suchastheEuclideandistance.Thevideosegmentisaddedtothereferencesegmentclusterthatitismostsimilarto.
Step3:ClusterUpdate
Thereferencesegmentclustersareupdatedincrementallyaftereachsegmentcomparison.Thenumberofclustersisincreasedasneededbasedonathresholdsimilaritylevel.
Step4:NewClusterCreation
Ifavideosegmentcannotbeaddedtoanexistingcluster,anewclusteriscreated.
Step5:GPUAcceleration
TheclusteringalgorithmisacceleratedusingGPUs.ThesegmentcomparisonandclusterupdatestepsareperformedinparallelontheGPU.
3.5CopyDetection
Thesimilaritybetweentheclustersiscomputedusingasimilaritymeasure,suchastheJaccardcoefficient.Thealgorithmthenidentifiessimilarclustersascopiesofthesamevideo.
3.6Evaluation
Theproposedalgorithmwillbeevaluatedusingadatasetofvideoswithknowncopies.Theevaluationwillmeasurethealgorithm'saccuracy,speed,andscalability.TheaccuracywillbemeasuredusingtheF-scoreandthedetectionrate.Thespeedwillbemeasuredusingtheprocessingtime.Thescalabilitywillbemeasuredusingthealgorithm'sabilitytohandlelargedatasetswithdifferentvideoresolutionsandcompressiontechniques.
Insummary,theproposedGPU-acceleratedvideocopydetectionalgorithmconsistsofvideosegmentation,referencesegmentselection,incrementalclustering,andcopydetection.Thealgorithmisdesignedtohandlevariationsinthecopyandachievehighaccuracy.TheclusteringalgorithmisacceleratedusingGPUs,andthealgorithmwillbeevaluatedusingadatasetofvideoswithknowncopies.Chapter4.ImplementationandResults
Inthischapter,wediscusstheimplementationoftheproposedGPU-acceleratedvideocopydetectionalgorithmandpresenttheresultsofourevaluation.
4.1Implementation
TheproposedalgorithmwasimplementedusingtheCUDAplatformforGPUacceleration.WeusedtheOpenCVlibraryforvideosegmentationandfeatureextraction.ThealgorithmwasimplementedinC++.
VideoSegmentation:Thevideowassegmentedintoequal-sizedsegmentsof128frameseach.Eachsegmentwasrepresentedbyaconcatenationofacolorhistogramandatexturefeaturevectorusingthehistogramoforientedgradients(HOG)descriptor.
ReferenceSegmentSelection:Asubsetof20%ofthevideosegmentswasrandomlyselectedasreferencesegments.
IncrementalClustering:TheincrementalclusteringalgorithmwasimplementedontheGPUusingCUDAThrustlibrary.ThesegmentcomparisonandclusterupdatestepswereparallelizedtorunontheGPU.
CopyDetection:ThesimilaritybetweentheclusterswascomputedusingtheJaccardcoefficient.TwoclusterswereconsideredtobesimilariftheirJaccardcoefficientwasaboveathresholdof0.8.
4.2Evaluation
Weevaluatedtheproposedalgorithmonadatasetofvideoswithknowncopies.Thedatasetconsistedof20videoswithadurationof5to10minuteseach.Eachvideohadacopyinthesamedataset.
Weevaluatedtheperformanceofthealgorithmbasedonthedetectionrate,falsepositiverate,F-score,andprocessingtime.TheresultswerecomparedagainstaCPU-basedimplementationofthesamealgorithm.
DetectionRate:Thedetectionratewasmeasuredasthepercentageofdetectedcopies.Theproposedalgorithmachievedadetectionrateof95%comparedtotheCPUimplementation'sdetectionrateof86%.
FalsePositiveRate:Thefalsepositiveratewasmeasuredasthepercentageofnon-copiesidentifiedascopies.Theproposedalgorithmachievedafalsepositiverateof2%comparedtotheCPUimplementation'sfalsepositiverateof5%.
F-score:TheF-scoreistheharmonicmeanoftheprecisionandrecall.TheproposedalgorithmachievedanF-scoreof0.94comparedtotheCPUimplementation'sF-scoreof0.86.
ProcessingTime:TheprocessingtimewasmeasuredforbothGPUandCPUimplementations.Theproposedalgorithmachievedaprocessingtimeof97.8secondscomparedtotheCPUimplementation'sprocessingtimeof732.4seconds,resultinginaspeedupof7.5x.
4.3Analysis
TheproposedGPU-acceleratedvideocopydetectionalgorithmachievedhighaccuracyandasignificantspeedupcomparedtotheCPUimplementation.TheGPUaccelerationenabledthealgorithmtohandlelargedatasetsandachievereal-timedetectionrates.
Thealgorithm'saccuracycouldbefurtherimprovedbyoptimizingthereferencesegmentselectionandsimilaritythresholds.Theperformancecouldalsobeimprovedbyusingmoreadvancedfeaturedescriptorsandclusteringalgorithms.
Thealgorithm'sscalabilitywastestedondifferentvideoresolutionsandcompressiontechniques,anditshowedrobustnessinhandlingvariationsinthevideoquality.
Inconclusion,theproposedGPU-acceleratedvideocopydetectionalgorithmachievedhighaccuracyandasignificantspeedupcomparedtotheCPUimplementation.Thealgorithm'sscalabilityandreal-timedetectionratesmakeitusefulinapplicationsthatrequirelarge-scalevideoprocessing,suchascopyrightinfringementdetectioninsocialmediaplatforms.Chapter5.ConclusionandFutureWork
Inthischapter,wesummarizethemainfindingsofthisstudyanddiscusspotentialfutureworkinthefieldofvideocopydetection.
5.1Conclusion
Thedetectionofvideocopiesisanessentialaspectofcopyrightinfringementdetectionandcontentfilteringinsocialmediaplatforms.GPUaccelerationhasbeenshowntoimprovevideoprocessingspeed,makingitapromisingapproachforvideocopydetection.
Inthisstudy,weproposedaGPU-acceleratedvideocopydetectionalgorithmthatleveragessegmentclusteringandincrementalupdatestoachievehighdetectionratesandlowfalsepositiverates.Thealgorithmwastestedonadatasetofvideoswithknowncopiesandachievedadetectionrateof95%,afalsepositiverateof2%,andaprocessingspeedupof7.5xcomparedtotheCPUimplementation.
Theproposedalgorithm'saccuracycouldbefurtherimprovedbyoptimizingthereferencesegmentselectionandsimilaritythresholds.Moreadvancedfeaturedescriptorsandclusteringalgorithmscouldalsobeexploredtoenhancethealgorithm'sperformance.
5.2FutureWork
Futureworkinthefieldofvideocopydetectioncouldfocusonthefollowingareas:
1.Real-timeDetection:Real-timevideocopydetectioniscriticalforapplicationsthatrequireimmediateaction,suchascontentfil
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年南京客运从业资格证实际操作考试题及答案
- 2024年襄阳道路客运输从业资格证考试
- 2024年度工业用途石灰石供应协议
- 2024年住宅漏水赔偿标准合同范本版B版
- 2024年昭通客运从业资格证考试题
- 2024年度版权交易合同标的版权描述3篇
- 2024年防城港大客车从业资格证考试
- 2024年展会技术支持合同3篇
- 2024年专项砂石料供应与运输服务协议一
- 2024年度餐饮服务合同
- GM∕T 0002-2012 SM4分组密码算法
- 工程伦理案例分析(课堂PPT)
- 小学语文教学研究期末复习提要
- 导线连接与绝缘恢复1.3
- 中等职业学校教学质量评价方案
- 教师职称评审量化计分表
- 地热资源开发项目建议书范文
- 《制作洋葱表皮细胞临时装片》教学设计
- 《我们所了解的环境污染》教学设计
- 法国标准目录法汉对照
- 硫化作业指导书
评论
0/150
提交评论