教师资格之中学数学学科知识与教学能力全真模拟试题分享附答案_第1页
教师资格之中学数学学科知识与教学能力全真模拟试题分享附答案_第2页
教师资格之中学数学学科知识与教学能力全真模拟试题分享附答案_第3页
教师资格之中学数学学科知识与教学能力全真模拟试题分享附答案_第4页
教师资格之中学数学学科知识与教学能力全真模拟试题分享附答案_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教师资格之中学数学学科知识与教学能力全真模拟试题分享附答案

单选题(共50题)1、患者男性,60岁,贫血伴逐渐加剧的腰痛半年余,肝、脾不大,Hb85g/L,白细胞3.6×10A.原发性巨球蛋白血症B.浆细胞白血病C.多发性骨髓瘤D.尿毒症E.急淋【答案】C2、新课程标准下数学教学过程的核心要素是()。A.师生相互沟通和交流B.师生的充分理解和信任C.教师的组织性与原则性D.多种要素的有机结合【答案】A3、关于PT测定下列说法错误的是A.PT测定是反映外源凝血系统最常用的筛选试验B.口服避孕药可使PT延长C.PT测定时0.109mol/L枸橼酸钠与血液的比例是1:9D.PT的参考值为11~14秒,超过正常3秒为异常E.肝脏疾病及维生素K缺乏症时PT延长【答案】B4、设函数f(x)满足f”(x)-5f’(x)+6f(x)=0,若f(x0)>0,f'(x0)=0,则()。A.f(x)在点x0处取得极大值B.f(x)在点x0的某个领域内单调增加C.f(x)在点x0处取得极小值D.f(x)在点x0的某个领域内单调减少【答案】A5、女性,20岁,头昏、乏力半年,近2年来每次月经持续7~8d,有血块。门诊检验:红细胞3.0×10A.缺铁性贫血B.溶血性贫血C.营养性巨幼细胞贫血D.再生障碍性贫血E.珠蛋白生成障碍性贫血【答案】A6、就红细胞生成素(EP)而言,下述错误的是()A.是一种糖蛋白,主要由肾产生,而人工无制备B.能刺激造血多能干细胞,使形成红细胞系祖细胞C.能促进幼红细胞增殖和成熟D.缺氧状态时,肾产生红细胞素增加E.胎儿时期肝脏也可产生【答案】A7、血小板膜糖蛋白Ⅰb与下列哪种血小板功能有关()A.黏附功能B.聚集功能C.分泌功能D.凝血功能E.维护血管内皮的完整性【答案】A8、下列关于椭圆的叙述:①平面内到两个定点的距离之和等于常数的动点轨迹是椭圆;②平面内到定直线和直线外的定点距离之比为大于1的常数的动点轨迹是椭圆;③从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆的另一个焦点;④平面与圆柱面的截面是椭圆。正确的个数是()A.0B.1C.2D.3【答案】C9、下列数学概念中,用“属概念加和差”方式定义的是()。A.正方形B.平行四边形C.有理数D.集合【答案】B10、DIC诊断中血小板计数低于正常,PT延长,Fbg低于2g/L。如果这三项中只有两项符合,必须补做哪一项纤溶指标A.3P试验B.PRTC.血小板抗体D.因子ⅧE.血小板功能试验【答案】A11、高中数学课程是义务教育阶段后普通高级中学的主要课程,具有()。A.基础性、选择性和发展性B.基础性、选择性和实践性C.基础性、实践性和创新性D.基础性、选择性和普适性【答案】A12、下列哪种疾病做PAS染色时红系呈阳性反应A.再生障碍性贫血B.巨幼红细胞性贫血C.红白血病D.溶血性贫血E.巨幼细胞性贫血【答案】C13、患者,男,28岁,患尿毒症晚期,拟接受肾移植手术。同卵双生兄弟间的器官移植属于A.自身移植B.同系移植C.同种移植D.异种移植E.胚胎组织移植【答案】B14、解二元一次方程组用到的数学方法主要是()。A.降次B.放缩C.消元D.归纳【答案】C15、原红与原粒的区别时,不符合原红的特点的是()A.胞体大,可见突起B.染色质粗粒状C.核仁暗蓝色,界限模糊D.胞浆呈均匀淡蓝色E.胞核圆形、居中或稍偏于一旁【答案】D16、重症肌无力在损伤机制上属于()A.细胞免疫功能缺陷B.Ⅱ型超敏反应C.体液免疫功能低下D.巨噬细胞缺陷E.NK细胞活性低下【答案】B17、设f(x)与g(x)是定义在同一区间增函数,下列结论一定正确的是()。A.f(x)+g(x)是增函数B.f(x)-g(x)是减函数C.f(x)g(x)是增函数D.f(g(x))是减函数【答案】A18、男性,30岁,黄疸,贫血4年,偶见酱油色尿。检验:红细胞2.15×10A.Coomb试验B.血清免疫球蛋白测定C.Ham试验D.尿隐血试验E.HBsAg【答案】C19、“矩形”和“菱形”的概念关系是哪个()。A.同一关系B.交叉关系C.属种关系D.矛盾关系【答案】B20、CD4A.50/μlB.100/μlC.200/μlD.500/μlE.1000/μl【答案】C21、纤溶酶的生理功能下列哪项是错误的()A.降解纤维蛋白和纤维蛋白原B.抑制组织纤溶酶原激活物(t-PA)C.水解多种凝血因子D.使谷氨酸纤溶酶转变为赖氨酸纤溶酶E.水解补体【答案】B22、荧光着色主要在细胞核周围形成荧光环的是A.均质型B.斑点型C.核膜型D.核仁型E.以上均不正确【答案】C23、设随机变量X~N(0,1),X的的分布函数为φ(x),则P(|X|>2)的值为()A.2[1-φ(2)]B.2φ(2)-1C.2-φ(2)D.1-2φ(2)【答案】A24、国际标准品属于A.一级标准品B.二级标准品C.三级标准品D.四级标准品E.五级标准品【答案】A25、Ⅳ型超敏反应A.由IgE抗体介导B.单核细胞增高C.以细胞溶解和组织损伤为主D.T细胞与抗原结合后导致的炎症反应E.可溶性免疫复合物沉积【答案】D26、以下哪些不属于学段目标中情感与态度方面的。()A.感受数学思考过程的合理性。B.感受数学思考过程的条理性和数学结论的确定性。C.获得成功的体验,有学好数学的信心。D.在解决问题过程中,能进行简单的、有条理的思考。【答案】D27、下列内容属于《义务教育数学课程标准(2011年版)》第三学段“数与式”的是()。A.①②③④B.①②④⑤C.①③④⑤D.①②③⑤【答案】C28、《义务教育数学课程标准(2011年版)》提出的课程标准包括,通过义务教育阶段的数学学习,学生能养成良好的学习习惯,良好的学习习惯指勤奋、独立思考、合作交流和()。A.反思质疑B.坚持真理C.修正错误D.严谨求是【答案】A29、在讲解“垂线”一课时,教师自制教具,将两根木条钉在一起并固定其中一根木条a,转动木条b,让学生观察,从而导入新课。这种导入方式属于()。A.实例导入B.直观导入C.悬念导入D.故事导入【答案】B30、Ⅲ型超敏反应根据发病机制,又可称为A.免疫复合物型超敏反应B.细胞毒型超敏反应C.迟发型超敏反应D.速发型超敏反应E.Ⅵ型超敏反应【答案】A31、粒细胞功能中具有共性的是()A.调理作用B.黏附作用C.吞噬作用D.杀菌作用E.中和作用【答案】C32、“以学生发展为本”中“发展”的含义包括全体学生的发展、全面和谐的发展、终身持续的发展、个人特长的发展以及()的发展。A.科学B.可持续性C.活泼主动D.身心健康【答案】C33、男性,65岁,手脚麻木伴头晕3个月,并时常有鼻出血。体检:脾肋下3.0cm,肝肋下1.5cm。检验:血红蛋白量150g/L,血小板数1100×10A.骨骼破坏B.肺部感染C.血栓形成D.皮肤出血E.溶血【答案】C34、提出“一笔画定理”的数学家是()。A.高斯B.牛顿C.欧拉D.莱布尼兹【答案】C35、Ⅱ型超敏反应A.由IgE抗体介导B.单核细胞增高C.以细胞溶解和组织损伤为主D.T细胞与抗原结合后导致的炎症反应E.可溶性免疫复合物沉积【答案】C36、NO是A.激活血小板物质B.舒血管物质C.调节血液凝固物质D.缩血管物质E.既有舒血管又能缩血管的物质【答案】B37、下列数学概念中,用“属概念加和差”方式定义的是()。A.正方形B.平行四边形C.有理数D.集合【答案】B38、关于心肌梗死,下列说法错误的是A.是一种常见的动脉血栓性栓塞性疾病B.血管内皮细胞损伤的检验指标增高C.生化酶学和血栓止血检测是诊断的金指标D.较有价值的观察指标是分子标志物检测E.血小板黏附和聚集功能增强【答案】C39、抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()。A.y=-x2B.y=-x2+1C.y=x2-1D.y=-x2-1【答案】D40、与意大利传教士利玛窦共同翻译了《几何原本》(Ⅰ—Ⅵ卷)的我国数学家是()。A.徐光启B.刘徽C.祖冲之D.杨辉【答案】A41、关于PT测定下列说法错误的是A.PT测定是反映外源凝血系统最常用的筛选试验B.口服避孕药可使PT延长C.PT测定时0.109mol/L枸橼酸钠与血液的比例是1:9D.PT的参考值为11~14秒,超过正常3秒为异常E.肝脏疾病及维生素K缺乏症时PT延长【答案】B42、下列哪项不是B细胞的免疫标志A.CD10B.CD19C.CD64D.HLA-DRE.CD22【答案】C43、与巨幼细胞性贫血无关的是A.中性粒细胞核分叶增多B.中性粒细胞核左移C.MCV112~159flD.MCH32~49pgE.MCHC0.32~0.36【答案】B44、下列不属于血管壁止血功能的是A.局部血管通透性降低B.血小板的激活C.凝血系统的激活D.收缩反应增强E.局部血黏度增加【答案】A45、《义务教育数学课程标准(2011年版)》从四个方面阐述了课程目标,这四个目标是()。A.知识技能、数学思考、问题解决、情感态度B.基础知识、基本技能、问题解决、情感态度C.基础知识、基本技能、数学思考、情感态度D.知识技能、问题解决、数学创新、情感态度【答案】A46、下列关于高中数学课程变化的内容,说法不正确的是()。A.高中数学课程中的向量既是几何的研究对象,也是代数的研究对象B.高中数学课程中,概率的学习重点是如何计数C.算法是培养逻辑推理能力的非常好的载体D.集合论是一个重要的数学分支【答案】B47、DIC时血小板计数一般范围是A.(100~300)×10B.(50~100)×10C.(100~300)×10D.(100~300)×10E.(100~250)×10【答案】B48、多发性骨髓瘤患者,血清中M蛋白含量低,不易在电泳中发现,常出现本周蛋白质、高血钙、肾功能损害及淀粉样变,属于免疫学分型的哪一型()A.IgA型B.IgD型C.轻链型D.不分泌型E.IgG型【答案】B49、与向量a=(2,3,1)垂直的平面是()。A.x-2y+z=3B.2x+y+3z=3C.2x+3y+z=3D.x—y+z=3【答案】C50、高中数学学习评价关注学生知识技能的掌握,更关注数学学科()的形式和发展,制定学科合理的学业质量要求,促进学生在不同学习阶段数学学科核心素养水平的达成。A.核心素养B.数学能力C.数学方法D.数学技能【答案】A大题(共10题)一、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。【答案】本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。二、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】三、在学习《有理数的加法》一课时,某位教师对该课进行了深入的研究,做出了合理的教学设计,根据该课内容完成下列任务:(1)本课的教学目标是什么(2)本课的教学重点和难点是什么(3)在情境引入的时候,某位老师通过一道实际生活中遇到的走路问题引出有理数的加法,让学生讨论得出有理数加法的两个数的符号,这样做的意义是什么【答案】(1)教学目标:知识与技能:通过实例,了解有理数的加法的意义,会根据有理数加法法则进行有理数的加法运算。过程与方法:用数形结合的思想方法得出有理数的加法法则,能运用有理数加法解决实际问题。情感态度与价值观:渗透数形结合的思想,培养运用数形结合的方法解决问题的能力,感知数学知识来源于生活,用联系发展的观点看待事物,逐步树立辩证唯物主义观点。(2)教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。教学难点:有理数加法中的异号两数进行加法运算。(3)这样做是为了让学生能直观感受到有理数的存在,通过贴近生活现实的实例进行讨论,得出结论会印象深刻,使学生对有理数的知识点掌握更加牢固。四、在“有理数的加法”一节中,对于有理数加法的运算法则的形成过程,两位教师的一些教学环节分别如下:【教师1】第一步:教师直接给出几个有理数加法算式,引导学生根据有理数的分类标准,将加法算式分成六类,即正数与正数相加,正数与负数相加,正数与0相加,0与0相加,负数与0相加,负数与负数相加。第二步:教师给出具体情境,分析两个正数相加,两个负数相加,正数与负数相加的情况。第三步:让学生进行模仿练习。第四步:教师将学生模仿练习的题目分成四类:同号相加,一个加数是0,互为相反数的两个数相加,异号相加。分析每一类题目的特点,得到有理数加法法则。【教师2】第一步:请学生列举一些有理数加法的算式。第二步:要求学生先独立运算,然后小组讨论,再全班交流。对于讨论交流的过程,教师提出具体要求:运算的结果是什么?你是怎么得到结果的?……讨论过程中,学生提出利用具体情境来解释运算的合理性……第三步:教师提出问题:“不考虑具体情境,基于不同情况分析这些算式的运算,有哪些规律?”……分组讨论后再全班交流,归纳得到有理数加法法则。问题:【答案】本题考查考生对基本数学思想方法的掌握及应用。五、《义务教育数学课程标准(2011年版)》附录中给出了两个例子:例1.计算15×15,25×25,…,95×95,并探索规律。例2.证明例1所发现的规律。很明显例1计算所得到的乘积是一个三位数或者四位数,其中后两位数为25,而百位和千位上的数字存在这样的规律:1×2=2,2×3=6,3×4=12,…,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例1、例2的教学目标;(8分)(2)设计“提出问题”的主要教学过程;(8分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7分)(4)设计“推广例1所探究的规律”的主要教学过程。(7分)【答案】本题主要考查考生对于新授课教学设计的能力。六、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。【答案】七、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为17只,总的腿数应为34条,但现在有48条腿,造成腿的数目不够是由于小兔的数目是O,每有一只小兔便会增加两条腿,敌应有(48—17×2)÷2=7只小兔。相应地,小鸡有10只。解法二:用代数方法:可设有x只小鸡,y只小兔,则x+y=17①;2x+4y=48②。将第一个方程的两边同乘以-2加到第二个方程中去,得x+y=17;(4-2)y=48-17x2。解上述第二个方程得y=7,把y=7代入第一个方程得x=10。所以有10只小鸡.7只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10分)(2)试说明这两种算法的共同点。(10分)【答案】(1)解法一所体现的算法是:S1假设没有小兔.则小鸡应为n只;S2计算总腿数为2n只;S3计算实际总腿数m与假设总腿数2n的差值m-2n;S4计算小兔只数为(m-2n)÷2;S5小鸡的只数为n-(m-2n)÷2;解法二所体现的算法是:S1设未知数S2根据题意列方程组;S3解方程组:S4还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。八、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。【答案】本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要.(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的.同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背.在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性.九、严谨性与量力性相结合”是数学教学的基本原则。(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论