




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FunctionsofComplexVariableandIntegralTransforms
GaiYunyingDepartmentofMathematicsHarbinInstitutesofTechnologyPreface
Therearetwopartsinthiscourse.ThefirstpartisFunctionsofcomplexvariable(thecomplexanalysis).Inthispart,thetheoryofanalyticfunctionsofcomplexvariablewillbeintroduced.
Thecomplexanalysisthatisthesubjectofthiscoursewasdevelopedinthenineteenthcentury,mainlyby
AugustionCauchy(1789-1857),laterhistheorywasmademorerigorousandextendedbysuchmathematiciansasPeterDirichlet(1805-1859),KarlWeierstrass(1815-1897),and
GeorgFriedrichRiemann(1826-1866).Complexanalysishasbecomeanindispensableandstandardtooloftheworkingmathematician,physicist,andengineer.Neglectofitcanprovetobeaseverehandicapinmostareasofresearchandapplicationinvolvingmathematicalideasandtechniques.ThefirstpartincludesChapter1-6.
ThesecondpartisIntegralTransforms:theFourierTransformandtheLaplaceTransform.
ThesecondpartincludesChapter7-8.1Chapter1
ComplexNumbersandFunctionsof
ComplexVariable1.Complexnumbersfield,complexplaneand
sphere1.1Introductiontocomplexnumbers
Asearlyasthesixteenthcentury
CeronimoCardanoconsideredquadratic(andcubic)equationssuchas
,whichissatisfiedbynorealnumber
,forexample
.Cardanonoticedthatifthese“complexnumbers”weretreatedasordinarynumberswiththeaddedrulethat
,theydidindeedsolvetheequations.Theimportantexpressionisnowgiventhewidelyaccepteddesignation.Itiscustomarytodenoteacomplexnumber:Therealnumbersandareknownastherealandimaginarypartsof,respectively,andwewriteTwocomplexnumbersareequalwhenevertheyhavethesamerealpartsandthesameimaginaryparts,i.e.
and.
Inwhatsensearethesecomplexnumbersanextensionofthereals?
Wehavealreadysaidthatifisarealwealsowritetostandfora
.Inotherwords,wearethisregardingtherealnumbersasthosecomplexnumbers
,where
.
If,intheexpression
theterm
.Wecallapureimaginarynumber.
Formally,thesystemofcomplexnumbersisanexampleofafield.Theadditionandmultiplicationofcomplexnumbersarethesameasforrealnumbers.If1.2Fourfundamentaloperations
Thecrucialrulesforafield,statedhereforreferenceonly,are:
AdditivelyRules:i.;ii.
;iii.
;
iv..
MultiplicationRules:i.;ii.
;iii.
;iv.
for
.DistributiveLaw:
Theorem1.Thecomplexnumbers
formafield.
Iftheusualorderingpropertiesforrealsaretohold,thensuchanorderingisimpossible.1.3Propertiesofcomplexnumbers
Acomplexnumbermaybethoughtofgeometricallyasa(two-dimensional)vectorandpicturedasanarrowfromtheorigintothepointin
givenbythecomplexnumber.
Becausethepoints
correspondtorealnumbers,thehorizontalor
axisiscalledtherealaxistheverticalaxis(theaxis)iscalledtheimaginaryaxis.Figure1.1
Vectorrepresentationofcomplexnumbers
Thelengthofthevector
isdefinedasandsupposethatthevectormakesanangle
withthepositivedirectionoftherealaxis,where.Thus.Sinceand,wethushaveThiswayiswritingthecomplexnumberiscalledthepolarcoordinate(triangle)representation.Figure1.2
Polarcoordinaterepresentationofcomplexnumbers
Thelengthofthevector
isdenotedandiscalledthenorm,ormodulus,orabsolutevalueof
.Theangleiscalledtheargumentoramplitudeofthecomplexnumbersandisdenoted
.Itiscalledtheprincipalvalueoftheargument.WehavePolarrepresentationofcomplexnumberssimplifiesthetaskofdescribinggeometricallytheproductoftwocomplexnumbers.
Let
and
.Then
Theorem3.and
Asaresultoftheprecedingdiscussion,thesecondequalityinTh3shouldbewrittenas.“
”meaningthattheleftandrightsidesoftheequationagreeafteradditionofamultipleof
totherightside.
Theorem4.
(deMoivre’sFormula).If
andisapositiveinteger,then.
Theorem5.Let
beagiven(nonzero)complexnumberwithpolarrepresentation
,Thenthethrootsof
aregivenbythecomplexnumbers
Example1.
Solve
for.
Solution:
If
,then,thecomplexconjugateof
,is
definedby.Figure1.3
ComplexconjugationTheorem6.
i.
iv.
andhenceis
,wehave
.ii.iii.forvii..vi.andv.ifandonlyifisrealTheorem7.i.
vii.vi.v.iv.thatis,
and
.iii.and;ii.If,thenFigure1.4Triangleinequality1.4Riemannsphere
Forsomepurposesitisconvenienttointroduceapoint“
”inadditiontothepoints
.Figure1.5Complexsphere
Formallyweaddasymbol“”to
toobtaintheextendedcomplexplane
anddefineoperationswith
bythe“rules”
2.ComplexnumberssetsFunctionsofcomplexvariable2.1Fundamentalconcepts(1)neighborhood
ofapoint
:(2)Adeletedneighborhoodofapoint:
(3)Apoint
issaidtobeaninteriorpointof
.Ifthereexists
.(4)Aset
isopen
iffforeach,
isaninteriorpointof
.
2.2Domain
Curve
Anopenset
isconnectedifeachpairofpoints
andinitcanbejoinedbyapolygonalline,consistingofafinitenumberoflinesegmentsjoinedendtoend,thatliesentirelyin
.Anopensetthatisconnectediscalledadomain.
Acurve,if,theniscontinuousandifthen
iscalledasimplecurve.
If
andiscalledasmoothcurve(apiecewisesmoothcurve).
Adomain
iscalledthesimplyconnectediff,foreverysimplyclosedcurve
in,theinsideof
alsoliesin
,orelseitiscalledthemultipleconnecteddomain.2.3Mappingsandcontinuity
Let
beaset.Werecallthatamappingismerelyanassignmentofaspecificpoint
toeach,
being
thedomainof
.Whenthedomainisasetin
andwhentherange(thesetofvalues
assumes)consistsofcomplexnumbers,wespeakof
asacomplexfunctionofacomplexvariable.
Wecanthinkof
asamap
;therefore
becomesavector-valuedfunctionoftworealvariables.Thus
andaremerelythecomponentsofthoughtofasavectorfunction.Hencewemaywriteuniquely,whereandarereal-valuedfunctionsdefinedon.For,wecanletanddefineand.
Def1.Let
bedefinedonadeletedneighborhoodof
.Themeans
thatforevery
,thereisa
suchthat
,andimplythat.
Wealsodefine,forexample,
tomeanthatforany,thereisan
suchthatimpliesthat.Figure1.6
iscloseto
when
iscloseto
Thelimitas
istakenforan
arbitraryapproachingbutnotalonganyparticulardirection.ii.
Thelimit
isunique.Thefollowingpropertiesoflimitshold:
If
and
,theni.iv.iii.if.Also,ifisdefinedatthepointsand
,then
Th1.Let
thenandProof:Itiseasybyusingthefollowinginequalities
Def2.Letbeanopensetandlet
beagivenfunction.Wesay
iscontinuousat
iffand
iscontinuouson
is
iscontinuousateach
.
From(i),(ii),and(iii)wecanimmediatelydeducethatif
andarecontinuouson,thensoarethesum
andtheproduct,andsoisif
forall
.Alsoif
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新疆生产建设兵团兴新职业技术学院《产品市场营销学》2023-2024学年第一学期期末试卷
- 从产业融合看宠物克隆服务的未来发展方向
- 行政机关考试试题及答案
- 网络安全管理员考试题含答案
- 山西省吕梁市2024-2025学年高二下学期期末调研测试数学试题(含答案)
- 河南省金科新未来2024-2025学年高二下学期期末联考考试历史(含答案)
- 幼儿园一级(高级技师)保育员综合练习试题含答案
- 煤矿失信行为管理办法
- 2025年上半年入党积极分子培训班结业考试题及答案
- 物业管理招标暂行办法
- 医疗保险基金使用监督管理条例
- 三家比价合同范例
- 《义务教育语文课程标准》(2022年版)
- 项目驻地安全防火培训
- 风险评估培训课件x
- 第九章和第十章+静电场+单元测试卷- 高二上学期物理人教版(2019)必修第三册
- 《PLC应用技术(西门子S7-1200)第二版》全套教学课件
- 考点24 句子衔接与排序(二):句子排序-2024年小升初语文专题训练(统编版)
- DB34∕T 3468-2019 民用建筑楼面保温隔声工程技术规程
- 国家开放大学本科《公共部门人力资源管理》期末纸质考试总题库2025版
- GB/T 44143-2024科技人才评价规范
评论
0/150
提交评论