![Chapter-1-复变函数与积分变换英文版课件_第1页](http://file4.renrendoc.com/view/432992d27e1cefee15a363e3e3064a17/432992d27e1cefee15a363e3e3064a171.gif)
![Chapter-1-复变函数与积分变换英文版课件_第2页](http://file4.renrendoc.com/view/432992d27e1cefee15a363e3e3064a17/432992d27e1cefee15a363e3e3064a172.gif)
![Chapter-1-复变函数与积分变换英文版课件_第3页](http://file4.renrendoc.com/view/432992d27e1cefee15a363e3e3064a17/432992d27e1cefee15a363e3e3064a173.gif)
![Chapter-1-复变函数与积分变换英文版课件_第4页](http://file4.renrendoc.com/view/432992d27e1cefee15a363e3e3064a17/432992d27e1cefee15a363e3e3064a174.gif)
![Chapter-1-复变函数与积分变换英文版课件_第5页](http://file4.renrendoc.com/view/432992d27e1cefee15a363e3e3064a17/432992d27e1cefee15a363e3e3064a175.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FunctionsofComplexVariableandIntegralTransforms
GaiYunyingDepartmentofMathematicsHarbinInstitutesofTechnologyPreface
Therearetwopartsinthiscourse.ThefirstpartisFunctionsofcomplexvariable(thecomplexanalysis).Inthispart,thetheoryofanalyticfunctionsofcomplexvariablewillbeintroduced.
Thecomplexanalysisthatisthesubjectofthiscoursewasdevelopedinthenineteenthcentury,mainlyby
AugustionCauchy(1789-1857),laterhistheorywasmademorerigorousandextendedbysuchmathematiciansasPeterDirichlet(1805-1859),KarlWeierstrass(1815-1897),and
GeorgFriedrichRiemann(1826-1866).Complexanalysishasbecomeanindispensableandstandardtooloftheworkingmathematician,physicist,andengineer.Neglectofitcanprovetobeaseverehandicapinmostareasofresearchandapplicationinvolvingmathematicalideasandtechniques.ThefirstpartincludesChapter1-6.
ThesecondpartisIntegralTransforms:theFourierTransformandtheLaplaceTransform.
ThesecondpartincludesChapter7-8.1Chapter1
ComplexNumbersandFunctionsof
ComplexVariable1.Complexnumbersfield,complexplaneand
sphere1.1Introductiontocomplexnumbers
Asearlyasthesixteenthcentury
CeronimoCardanoconsideredquadratic(andcubic)equationssuchas
,whichissatisfiedbynorealnumber
,forexample
.Cardanonoticedthatifthese“complexnumbers”weretreatedasordinarynumberswiththeaddedrulethat
,theydidindeedsolvetheequations.Theimportantexpressionisnowgiventhewidelyaccepteddesignation.Itiscustomarytodenoteacomplexnumber:Therealnumbersandareknownastherealandimaginarypartsof,respectively,andwewriteTwocomplexnumbersareequalwhenevertheyhavethesamerealpartsandthesameimaginaryparts,i.e.
and.
Inwhatsensearethesecomplexnumbersanextensionofthereals?
Wehavealreadysaidthatifisarealwealsowritetostandfora
.Inotherwords,wearethisregardingtherealnumbersasthosecomplexnumbers
,where
.
If,intheexpression
theterm
.Wecallapureimaginarynumber.
Formally,thesystemofcomplexnumbersisanexampleofafield.Theadditionandmultiplicationofcomplexnumbersarethesameasforrealnumbers.If1.2Fourfundamentaloperations
Thecrucialrulesforafield,statedhereforreferenceonly,are:
AdditivelyRules:i.;ii.
;iii.
;
iv..
MultiplicationRules:i.;ii.
;iii.
;iv.
for
.DistributiveLaw:
Theorem1.Thecomplexnumbers
formafield.
Iftheusualorderingpropertiesforrealsaretohold,thensuchanorderingisimpossible.1.3Propertiesofcomplexnumbers
Acomplexnumbermaybethoughtofgeometricallyasa(two-dimensional)vectorandpicturedasanarrowfromtheorigintothepointin
givenbythecomplexnumber.
Becausethepoints
correspondtorealnumbers,thehorizontalor
axisiscalledtherealaxistheverticalaxis(theaxis)iscalledtheimaginaryaxis.Figure1.1
Vectorrepresentationofcomplexnumbers
Thelengthofthevector
isdefinedasandsupposethatthevectormakesanangle
withthepositivedirectionoftherealaxis,where.Thus.Sinceand,wethushaveThiswayiswritingthecomplexnumberiscalledthepolarcoordinate(triangle)representation.Figure1.2
Polarcoordinaterepresentationofcomplexnumbers
Thelengthofthevector
isdenotedandiscalledthenorm,ormodulus,orabsolutevalueof
.Theangleiscalledtheargumentoramplitudeofthecomplexnumbersandisdenoted
.Itiscalledtheprincipalvalueoftheargument.WehavePolarrepresentationofcomplexnumberssimplifiesthetaskofdescribinggeometricallytheproductoftwocomplexnumbers.
Let
and
.Then
Theorem3.and
Asaresultoftheprecedingdiscussion,thesecondequalityinTh3shouldbewrittenas.“
”meaningthattheleftandrightsidesoftheequationagreeafteradditionofamultipleof
totherightside.
Theorem4.
(deMoivre’sFormula).If
andisapositiveinteger,then.
Theorem5.Let
beagiven(nonzero)complexnumberwithpolarrepresentation
,Thenthethrootsof
aregivenbythecomplexnumbers
Example1.
Solve
for.
Solution:
If
,then,thecomplexconjugateof
,is
definedby.Figure1.3
ComplexconjugationTheorem6.
i.
iv.
andhenceis
,wehave
.ii.iii.forvii..vi.andv.ifandonlyifisrealTheorem7.i.
vii.vi.v.iv.thatis,
and
.iii.and;ii.If,thenFigure1.4Triangleinequality1.4Riemannsphere
Forsomepurposesitisconvenienttointroduceapoint“
”inadditiontothepoints
.Figure1.5Complexsphere
Formallyweaddasymbol“”to
toobtaintheextendedcomplexplane
anddefineoperationswith
bythe“rules”
2.ComplexnumberssetsFunctionsofcomplexvariable2.1Fundamentalconcepts(1)neighborhood
ofapoint
:(2)Adeletedneighborhoodofapoint:
(3)Apoint
issaidtobeaninteriorpointof
.Ifthereexists
.(4)Aset
isopen
iffforeach,
isaninteriorpointof
.
2.2Domain
Curve
Anopenset
isconnectedifeachpairofpoints
andinitcanbejoinedbyapolygonalline,consistingofafinitenumberoflinesegmentsjoinedendtoend,thatliesentirelyin
.Anopensetthatisconnectediscalledadomain.
Acurve,if,theniscontinuousandifthen
iscalledasimplecurve.
If
andiscalledasmoothcurve(apiecewisesmoothcurve).
Adomain
iscalledthesimplyconnectediff,foreverysimplyclosedcurve
in,theinsideof
alsoliesin
,orelseitiscalledthemultipleconnecteddomain.2.3Mappingsandcontinuity
Let
beaset.Werecallthatamappingismerelyanassignmentofaspecificpoint
toeach,
being
thedomainof
.Whenthedomainisasetin
andwhentherange(thesetofvalues
assumes)consistsofcomplexnumbers,wespeakof
asacomplexfunctionofacomplexvariable.
Wecanthinkof
asamap
;therefore
becomesavector-valuedfunctionoftworealvariables.Thus
andaremerelythecomponentsofthoughtofasavectorfunction.Hencewemaywriteuniquely,whereandarereal-valuedfunctionsdefinedon.For,wecanletanddefineand.
Def1.Let
bedefinedonadeletedneighborhoodof
.Themeans
thatforevery
,thereisa
suchthat
,andimplythat.
Wealsodefine,forexample,
tomeanthatforany,thereisan
suchthatimpliesthat.Figure1.6
iscloseto
when
iscloseto
Thelimitas
istakenforan
arbitraryapproachingbutnotalonganyparticulardirection.ii.
Thelimit
isunique.Thefollowingpropertiesoflimitshold:
If
and
,theni.iv.iii.if.Also,ifisdefinedatthepointsand
,then
Th1.Let
thenandProof:Itiseasybyusingthefollowinginequalities
Def2.Letbeanopensetandlet
beagivenfunction.Wesay
iscontinuousat
iffand
iscontinuouson
is
iscontinuousateach
.
From(i),(ii),and(iii)wecanimmediatelydeducethatif
andarecontinuouson,thensoarethesum
andtheproduct,andsoisif
forall
.Alsoif
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 16254:2024 EN Acoustics - Measurement of sound emitted by road vehicles of category M and N at standstill and low speed operation - Engineering method
- 2025年度短信平台数据统计分析服务合同范本
- 2025年度阳台装修封包与景观照明系统安装合同
- 化学-黑龙江省大庆市实验中学2024-2025学年高一上学期阶段考试
- 软件开发项目管理计划
- 秘书工作任务安排计划
- 韵律之声学校声乐社团训练计划
- 从规划到执行的工作计划流程
- 持续改进班级工作方法计划
- 从消费者行为看品牌优化计划
- 《网络安全防护项目教程》课件项目4 网络病毒和恶意代码分析与防御
- 四川省达州市达川区2023-2024学年八年级下学期期末道德与法治试题
- 账期协议书账期合同书
- 信息技术课程标准2023版:义务教育小学阶段
- 职业技术学院环境工程技术专业《水处理技术》课程标准
- 2024年兴业银行股份有限公司校园招聘考试试题参考答案
- 2024年中国国际航空股份有限公司校园招聘考试试题含答案
- 2024年常德职业技术学院单招职业适应性测试题库完整
- 天津市河东区2023-2024学年九年级上学期期末数学试题
- 2023-2024学年统编版语文 七年级下册第21课《古代诗歌五首-己亥杂诗(其五)》课件
- 驾驶证延期申请委托书
评论
0/150
提交评论