版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FunctionsofComplexVariableandIntegralTransforms
GaiYunyingDepartmentofMathematicsHarbinInstitutesofTechnologyPreface
Therearetwopartsinthiscourse.ThefirstpartisFunctionsofcomplexvariable(thecomplexanalysis).Inthispart,thetheoryofanalyticfunctionsofcomplexvariablewillbeintroduced.
Thecomplexanalysisthatisthesubjectofthiscoursewasdevelopedinthenineteenthcentury,mainlyby
AugustionCauchy(1789-1857),laterhistheorywasmademorerigorousandextendedbysuchmathematiciansasPeterDirichlet(1805-1859),KarlWeierstrass(1815-1897),and
GeorgFriedrichRiemann(1826-1866).Complexanalysishasbecomeanindispensableandstandardtooloftheworkingmathematician,physicist,andengineer.Neglectofitcanprovetobeaseverehandicapinmostareasofresearchandapplicationinvolvingmathematicalideasandtechniques.ThefirstpartincludesChapter1-6.
ThesecondpartisIntegralTransforms:theFourierTransformandtheLaplaceTransform.
ThesecondpartincludesChapter7-8.1Chapter1
ComplexNumbersandFunctionsof
ComplexVariable1.Complexnumbersfield,complexplaneand
sphere1.1Introductiontocomplexnumbers
Asearlyasthesixteenthcentury
CeronimoCardanoconsideredquadratic(andcubic)equationssuchas
,whichissatisfiedbynorealnumber
,forexample
.Cardanonoticedthatifthese“complexnumbers”weretreatedasordinarynumberswiththeaddedrulethat
,theydidindeedsolvetheequations.Theimportantexpressionisnowgiventhewidelyaccepteddesignation.Itiscustomarytodenoteacomplexnumber:Therealnumbersandareknownastherealandimaginarypartsof,respectively,andwewriteTwocomplexnumbersareequalwhenevertheyhavethesamerealpartsandthesameimaginaryparts,i.e.
and.
Inwhatsensearethesecomplexnumbersanextensionofthereals?
Wehavealreadysaidthatifisarealwealsowritetostandfora
.Inotherwords,wearethisregardingtherealnumbersasthosecomplexnumbers
,where
.
If,intheexpression
theterm
.Wecallapureimaginarynumber.
Formally,thesystemofcomplexnumbersisanexampleofafield.Theadditionandmultiplicationofcomplexnumbersarethesameasforrealnumbers.If1.2Fourfundamentaloperations
Thecrucialrulesforafield,statedhereforreferenceonly,are:
AdditivelyRules:i.;ii.
;iii.
;
iv..
MultiplicationRules:i.;ii.
;iii.
;iv.
for
.DistributiveLaw:
Theorem1.Thecomplexnumbers
formafield.
Iftheusualorderingpropertiesforrealsaretohold,thensuchanorderingisimpossible.1.3Propertiesofcomplexnumbers
Acomplexnumbermaybethoughtofgeometricallyasa(two-dimensional)vectorandpicturedasanarrowfromtheorigintothepointin
givenbythecomplexnumber.
Becausethepoints
correspondtorealnumbers,thehorizontalor
axisiscalledtherealaxistheverticalaxis(theaxis)iscalledtheimaginaryaxis.Figure1.1
Vectorrepresentationofcomplexnumbers
Thelengthofthevector
isdefinedasandsupposethatthevectormakesanangle
withthepositivedirectionoftherealaxis,where.Thus.Sinceand,wethushaveThiswayiswritingthecomplexnumberiscalledthepolarcoordinate(triangle)representation.Figure1.2
Polarcoordinaterepresentationofcomplexnumbers
Thelengthofthevector
isdenotedandiscalledthenorm,ormodulus,orabsolutevalueof
.Theangleiscalledtheargumentoramplitudeofthecomplexnumbersandisdenoted
.Itiscalledtheprincipalvalueoftheargument.WehavePolarrepresentationofcomplexnumberssimplifiesthetaskofdescribinggeometricallytheproductoftwocomplexnumbers.
Let
and
.Then
Theorem3.and
Asaresultoftheprecedingdiscussion,thesecondequalityinTh3shouldbewrittenas.“
”meaningthattheleftandrightsidesoftheequationagreeafteradditionofamultipleof
totherightside.
Theorem4.
(deMoivre’sFormula).If
andisapositiveinteger,then.
Theorem5.Let
beagiven(nonzero)complexnumberwithpolarrepresentation
,Thenthethrootsof
aregivenbythecomplexnumbers
Example1.
Solve
for.
Solution:
If
,then,thecomplexconjugateof
,is
definedby.Figure1.3
ComplexconjugationTheorem6.
i.
iv.
andhenceis
,wehave
.ii.iii.forvii..vi.andv.ifandonlyifisrealTheorem7.i.
vii.vi.v.iv.thatis,
and
.iii.and;ii.If,thenFigure1.4Triangleinequality1.4Riemannsphere
Forsomepurposesitisconvenienttointroduceapoint“
”inadditiontothepoints
.Figure1.5Complexsphere
Formallyweaddasymbol“”to
toobtaintheextendedcomplexplane
anddefineoperationswith
bythe“rules”
2.ComplexnumberssetsFunctionsofcomplexvariable2.1Fundamentalconcepts(1)neighborhood
ofapoint
:(2)Adeletedneighborhoodofapoint:
(3)Apoint
issaidtobeaninteriorpointof
.Ifthereexists
.(4)Aset
isopen
iffforeach,
isaninteriorpointof
.
2.2Domain
Curve
Anopenset
isconnectedifeachpairofpoints
andinitcanbejoinedbyapolygonalline,consistingofafinitenumberoflinesegmentsjoinedendtoend,thatliesentirelyin
.Anopensetthatisconnectediscalledadomain.
Acurve,if,theniscontinuousandifthen
iscalledasimplecurve.
If
andiscalledasmoothcurve(apiecewisesmoothcurve).
Adomain
iscalledthesimplyconnectediff,foreverysimplyclosedcurve
in,theinsideof
alsoliesin
,orelseitiscalledthemultipleconnecteddomain.2.3Mappingsandcontinuity
Let
beaset.Werecallthatamappingismerelyanassignmentofaspecificpoint
toeach,
being
thedomainof
.Whenthedomainisasetin
andwhentherange(thesetofvalues
assumes)consistsofcomplexnumbers,wespeakof
asacomplexfunctionofacomplexvariable.
Wecanthinkof
asamap
;therefore
becomesavector-valuedfunctionoftworealvariables.Thus
andaremerelythecomponentsofthoughtofasavectorfunction.Hencewemaywriteuniquely,whereandarereal-valuedfunctionsdefinedon.For,wecanletanddefineand.
Def1.Let
bedefinedonadeletedneighborhoodof
.Themeans
thatforevery
,thereisa
suchthat
,andimplythat.
Wealsodefine,forexample,
tomeanthatforany,thereisan
suchthatimpliesthat.Figure1.6
iscloseto
when
iscloseto
Thelimitas
istakenforan
arbitraryapproachingbutnotalonganyparticulardirection.ii.
Thelimit
isunique.Thefollowingpropertiesoflimitshold:
If
and
,theni.iv.iii.if.Also,ifisdefinedatthepointsand
,then
Th1.Let
thenandProof:Itiseasybyusingthefollowinginequalities
Def2.Letbeanopensetandlet
beagivenfunction.Wesay
iscontinuousat
iffand
iscontinuouson
is
iscontinuousateach
.
From(i),(ii),and(iii)wecanimmediatelydeducethatif
andarecontinuouson,thensoarethesum
andtheproduct,andsoisif
forall
.Alsoif
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某著名企业项目建议书v60某著名企业0204
- 《GBT 18511-2017 煤的着火温度测定方法》专题研究报告
- 《GBT 5121.3-2008铜及铜合金化学分析方法 第3部分:铅含量的测定》专题研究报告深度
- 道路作业交通安全培训课件
- 2026年九年级物理上册期末综合考核试题及答案
- 2025-2026年苏课新版八年级英语上册期末解析含答案
- 2026年福建省公务员考试《行测》试题及答案
- 迪士尼介绍教学课件
- 达旗市交通安全培训课件
- 达尔文的微课件
- 2025至2030PA12T型行业发展趋势分析与未来投资战略咨询研究报告
- 精神科暗示治疗技术解析
- 2025年人工智能训练师(三级)职业技能鉴定理论考试题库(含答案)
- 智慧产业园仓储项目可行性研究报告-商业计划书
- 财务部门的年度目标与计划
- 消防管道拆除合同协议
- 四川省森林资源规划设计调查技术细则
- 银行外包服务管理应急预案
- DB13T 5885-2024地表基质调查规范(1∶50 000)
- 2025年度演出合同知识产权保护范本
- 青少年交通安全法规
评论
0/150
提交评论