版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FunctionsofComplexVariableandIntegralTransforms
GaiYunyingDepartmentofMathematicsHarbinInstitutesofTechnologyPreface
Therearetwopartsinthiscourse.ThefirstpartisFunctionsofcomplexvariable(thecomplexanalysis).Inthispart,thetheoryofanalyticfunctionsofcomplexvariablewillbeintroduced.
Thecomplexanalysisthatisthesubjectofthiscoursewasdevelopedinthenineteenthcentury,mainlyby
AugustionCauchy(1789-1857),laterhistheorywasmademorerigorousandextendedbysuchmathematiciansasPeterDirichlet(1805-1859),KarlWeierstrass(1815-1897),and
GeorgFriedrichRiemann(1826-1866).Complexanalysishasbecomeanindispensableandstandardtooloftheworkingmathematician,physicist,andengineer.Neglectofitcanprovetobeaseverehandicapinmostareasofresearchandapplicationinvolvingmathematicalideasandtechniques.ThefirstpartincludesChapter1-6.
ThesecondpartisIntegralTransforms:theFourierTransformandtheLaplaceTransform.
ThesecondpartincludesChapter7-8.1Chapter1
ComplexNumbersandFunctionsof
ComplexVariable1.Complexnumbersfield,complexplaneand
sphere1.1Introductiontocomplexnumbers
Asearlyasthesixteenthcentury
CeronimoCardanoconsideredquadratic(andcubic)equationssuchas
,whichissatisfiedbynorealnumber
,forexample
.Cardanonoticedthatifthese“complexnumbers”weretreatedasordinarynumberswiththeaddedrulethat
,theydidindeedsolvetheequations.Theimportantexpressionisnowgiventhewidelyaccepteddesignation.Itiscustomarytodenoteacomplexnumber:Therealnumbersandareknownastherealandimaginarypartsof,respectively,andwewriteTwocomplexnumbersareequalwhenevertheyhavethesamerealpartsandthesameimaginaryparts,i.e.
and.
Inwhatsensearethesecomplexnumbersanextensionofthereals?
Wehavealreadysaidthatifisarealwealsowritetostandfora
.Inotherwords,wearethisregardingtherealnumbersasthosecomplexnumbers
,where
.
If,intheexpression
theterm
.Wecallapureimaginarynumber.
Formally,thesystemofcomplexnumbersisanexampleofafield.Theadditionandmultiplicationofcomplexnumbersarethesameasforrealnumbers.If1.2Fourfundamentaloperations
Thecrucialrulesforafield,statedhereforreferenceonly,are:
AdditivelyRules:i.;ii.
;iii.
;
iv..
MultiplicationRules:i.;ii.
;iii.
;iv.
for
.DistributiveLaw:
Theorem1.Thecomplexnumbers
formafield.
Iftheusualorderingpropertiesforrealsaretohold,thensuchanorderingisimpossible.1.3Propertiesofcomplexnumbers
Acomplexnumbermaybethoughtofgeometricallyasa(two-dimensional)vectorandpicturedasanarrowfromtheorigintothepointin
givenbythecomplexnumber.
Becausethepoints
correspondtorealnumbers,thehorizontalor
axisiscalledtherealaxistheverticalaxis(theaxis)iscalledtheimaginaryaxis.Figure1.1
Vectorrepresentationofcomplexnumbers
Thelengthofthevector
isdefinedasandsupposethatthevectormakesanangle
withthepositivedirectionoftherealaxis,where.Thus.Sinceand,wethushaveThiswayiswritingthecomplexnumberiscalledthepolarcoordinate(triangle)representation.Figure1.2
Polarcoordinaterepresentationofcomplexnumbers
Thelengthofthevector
isdenotedandiscalledthenorm,ormodulus,orabsolutevalueof
.Theangleiscalledtheargumentoramplitudeofthecomplexnumbersandisdenoted
.Itiscalledtheprincipalvalueoftheargument.WehavePolarrepresentationofcomplexnumberssimplifiesthetaskofdescribinggeometricallytheproductoftwocomplexnumbers.
Let
and
.Then
Theorem3.and
Asaresultoftheprecedingdiscussion,thesecondequalityinTh3shouldbewrittenas.“
”meaningthattheleftandrightsidesoftheequationagreeafteradditionofamultipleof
totherightside.
Theorem4.
(deMoivre’sFormula).If
andisapositiveinteger,then.
Theorem5.Let
beagiven(nonzero)complexnumberwithpolarrepresentation
,Thenthethrootsof
aregivenbythecomplexnumbers
Example1.
Solve
for.
Solution:
If
,then,thecomplexconjugateof
,is
definedby.Figure1.3
ComplexconjugationTheorem6.
i.
iv.
andhenceis
,wehave
.ii.iii.forvii..vi.andv.ifandonlyifisrealTheorem7.i.
vii.vi.v.iv.thatis,
and
.iii.and;ii.If,thenFigure1.4Triangleinequality1.4Riemannsphere
Forsomepurposesitisconvenienttointroduceapoint“
”inadditiontothepoints
.Figure1.5Complexsphere
Formallyweaddasymbol“”to
toobtaintheextendedcomplexplane
anddefineoperationswith
bythe“rules”
2.ComplexnumberssetsFunctionsofcomplexvariable2.1Fundamentalconcepts(1)neighborhood
ofapoint
:(2)Adeletedneighborhoodofapoint:
(3)Apoint
issaidtobeaninteriorpointof
.Ifthereexists
.(4)Aset
isopen
iffforeach,
isaninteriorpointof
.
2.2Domain
Curve
Anopenset
isconnectedifeachpairofpoints
andinitcanbejoinedbyapolygonalline,consistingofafinitenumberoflinesegmentsjoinedendtoend,thatliesentirelyin
.Anopensetthatisconnectediscalledadomain.
Acurve,if,theniscontinuousandifthen
iscalledasimplecurve.
If
andiscalledasmoothcurve(apiecewisesmoothcurve).
Adomain
iscalledthesimplyconnectediff,foreverysimplyclosedcurve
in,theinsideof
alsoliesin
,orelseitiscalledthemultipleconnecteddomain.2.3Mappingsandcontinuity
Let
beaset.Werecallthatamappingismerelyanassignmentofaspecificpoint
toeach,
being
thedomainof
.Whenthedomainisasetin
andwhentherange(thesetofvalues
assumes)consistsofcomplexnumbers,wespeakof
asacomplexfunctionofacomplexvariable.
Wecanthinkof
asamap
;therefore
becomesavector-valuedfunctionoftworealvariables.Thus
andaremerelythecomponentsofthoughtofasavectorfunction.Hencewemaywriteuniquely,whereandarereal-valuedfunctionsdefinedon.For,wecanletanddefineand.
Def1.Let
bedefinedonadeletedneighborhoodof
.Themeans
thatforevery
,thereisa
suchthat
,andimplythat.
Wealsodefine,forexample,
tomeanthatforany,thereisan
suchthatimpliesthat.Figure1.6
iscloseto
when
iscloseto
Thelimitas
istakenforan
arbitraryapproachingbutnotalonganyparticulardirection.ii.
Thelimit
isunique.Thefollowingpropertiesoflimitshold:
If
and
,theni.iv.iii.if.Also,ifisdefinedatthepointsand
,then
Th1.Let
thenandProof:Itiseasybyusingthefollowinginequalities
Def2.Letbeanopensetandlet
beagivenfunction.Wesay
iscontinuousat
iffand
iscontinuouson
is
iscontinuousateach
.
From(i),(ii),and(iii)wecanimmediatelydeducethatif
andarecontinuouson,thensoarethesum
andtheproduct,andsoisif
forall
.Alsoif
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年医学考研生理学专业知识题库含临床应用
- 2026年逻辑推理批判性思维与问题解决能力训练题集
- 2026年税务师职业资格考试税法专业知识题
- 2026年医学常识与疾病诊断练习题库
- 2026年心理学专业职称考试心理测量模拟题
- 2026年计算机二级考试C语言编程练习题集
- 2026年职业心理测评与诊断模拟试题
- 医学生理化学类:钠钙交换课件
- 安徽省2026年证券从业人员资格考试报名通知试题冲刺卷
- 架线工程杆塔基础施工技术手册
- 2025年贵州事业编a类考试真题及答案
- 2026绍兴理工学院招聘32人备考题库及答案详解(考点梳理)
- 2026上海市事业单位招聘笔试备考试题及答案解析
- GB/T 21558-2025建筑绝热用硬质聚氨酯泡沫塑料
- “十五五规划纲要”解读:应急管理能力提升
- 多学科协作护理模式在肥胖症患者体重管理中的实践与创新
- 2025年领导干部任前廉政知识测试题库(附答案)
- 贷款担保人免责协议书
- 研发岗位廉洁从业教育
- (2025年)全国行业职业技能竞赛(电力交易员)考试题库及答案
- 《电力机车牵引控制技术》课件全套 第1-6章 电力机车牵引控制概述- HXD3B型电力机车总线及TCMS系统
评论
0/150
提交评论