




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FunctionsofComplexVariableandIntegralTransforms
GaiYunyingDepartmentofMathematicsHarbinInstitutesofTechnologyPreface
Therearetwopartsinthiscourse.ThefirstpartisFunctionsofcomplexvariable(thecomplexanalysis).Inthispart,thetheoryofanalyticfunctionsofcomplexvariablewillbeintroduced.
Thecomplexanalysisthatisthesubjectofthiscoursewasdevelopedinthenineteenthcentury,mainlyby
AugustionCauchy(1789-1857),laterhistheorywasmademorerigorousandextendedbysuchmathematiciansasPeterDirichlet(1805-1859),KarlWeierstrass(1815-1897),and
GeorgFriedrichRiemann(1826-1866).Complexanalysishasbecomeanindispensableandstandardtooloftheworkingmathematician,physicist,andengineer.Neglectofitcanprovetobeaseverehandicapinmostareasofresearchandapplicationinvolvingmathematicalideasandtechniques.ThefirstpartincludesChapter1-6.
ThesecondpartisIntegralTransforms:theFourierTransformandtheLaplaceTransform.
ThesecondpartincludesChapter7-8.1Chapter1
ComplexNumbersandFunctionsof
ComplexVariable1.Complexnumbersfield,complexplaneand
sphere1.1Introductiontocomplexnumbers
Asearlyasthesixteenthcentury
CeronimoCardanoconsideredquadratic(andcubic)equationssuchas
,whichissatisfiedbynorealnumber
,forexample
.Cardanonoticedthatifthese“complexnumbers”weretreatedasordinarynumberswiththeaddedrulethat
,theydidindeedsolvetheequations.Theimportantexpressionisnowgiventhewidelyaccepteddesignation.Itiscustomarytodenoteacomplexnumber:Therealnumbersandareknownastherealandimaginarypartsof,respectively,andwewriteTwocomplexnumbersareequalwhenevertheyhavethesamerealpartsandthesameimaginaryparts,i.e.
and.
Inwhatsensearethesecomplexnumbersanextensionofthereals?
Wehavealreadysaidthatifisarealwealsowritetostandfora
.Inotherwords,wearethisregardingtherealnumbersasthosecomplexnumbers
,where
.
If,intheexpression
theterm
.Wecallapureimaginarynumber.
Formally,thesystemofcomplexnumbersisanexampleofafield.Theadditionandmultiplicationofcomplexnumbersarethesameasforrealnumbers.If1.2Fourfundamentaloperations
Thecrucialrulesforafield,statedhereforreferenceonly,are:
AdditivelyRules:i.;ii.
;iii.
;
iv..
MultiplicationRules:i.;ii.
;iii.
;iv.
for
.DistributiveLaw:
Theorem1.Thecomplexnumbers
formafield.
Iftheusualorderingpropertiesforrealsaretohold,thensuchanorderingisimpossible.1.3Propertiesofcomplexnumbers
Acomplexnumbermaybethoughtofgeometricallyasa(two-dimensional)vectorandpicturedasanarrowfromtheorigintothepointin
givenbythecomplexnumber.
Becausethepoints
correspondtorealnumbers,thehorizontalor
axisiscalledtherealaxistheverticalaxis(theaxis)iscalledtheimaginaryaxis.Figure1.1
Vectorrepresentationofcomplexnumbers
Thelengthofthevector
isdefinedasandsupposethatthevectormakesanangle
withthepositivedirectionoftherealaxis,where.Thus.Sinceand,wethushaveThiswayiswritingthecomplexnumberiscalledthepolarcoordinate(triangle)representation.Figure1.2
Polarcoordinaterepresentationofcomplexnumbers
Thelengthofthevector
isdenotedandiscalledthenorm,ormodulus,orabsolutevalueof
.Theangleiscalledtheargumentoramplitudeofthecomplexnumbersandisdenoted
.Itiscalledtheprincipalvalueoftheargument.WehavePolarrepresentationofcomplexnumberssimplifiesthetaskofdescribinggeometricallytheproductoftwocomplexnumbers.
Let
and
.Then
Theorem3.and
Asaresultoftheprecedingdiscussion,thesecondequalityinTh3shouldbewrittenas.“
”meaningthattheleftandrightsidesoftheequationagreeafteradditionofamultipleof
totherightside.
Theorem4.
(deMoivre’sFormula).If
andisapositiveinteger,then.
Theorem5.Let
beagiven(nonzero)complexnumberwithpolarrepresentation
,Thenthethrootsof
aregivenbythecomplexnumbers
Example1.
Solve
for.
Solution:
If
,then,thecomplexconjugateof
,is
definedby.Figure1.3
ComplexconjugationTheorem6.
i.
iv.
andhenceis
,wehave
.ii.iii.forvii..vi.andv.ifandonlyifisrealTheorem7.i.
vii.vi.v.iv.thatis,
and
.iii.and;ii.If,thenFigure1.4Triangleinequality1.4Riemannsphere
Forsomepurposesitisconvenienttointroduceapoint“
”inadditiontothepoints
.Figure1.5Complexsphere
Formallyweaddasymbol“”to
toobtaintheextendedcomplexplane
anddefineoperationswith
bythe“rules”
2.ComplexnumberssetsFunctionsofcomplexvariable2.1Fundamentalconcepts(1)neighborhood
ofapoint
:(2)Adeletedneighborhoodofapoint:
(3)Apoint
issaidtobeaninteriorpointof
.Ifthereexists
.(4)Aset
isopen
iffforeach,
isaninteriorpointof
.
2.2Domain
Curve
Anopenset
isconnectedifeachpairofpoints
andinitcanbejoinedbyapolygonalline,consistingofafinitenumberoflinesegmentsjoinedendtoend,thatliesentirelyin
.Anopensetthatisconnectediscalledadomain.
Acurve,if,theniscontinuousandifthen
iscalledasimplecurve.
If
andiscalledasmoothcurve(apiecewisesmoothcurve).
Adomain
iscalledthesimplyconnectediff,foreverysimplyclosedcurve
in,theinsideof
alsoliesin
,orelseitiscalledthemultipleconnecteddomain.2.3Mappingsandcontinuity
Let
beaset.Werecallthatamappingismerelyanassignmentofaspecificpoint
toeach,
being
thedomainof
.Whenthedomainisasetin
andwhentherange(thesetofvalues
assumes)consistsofcomplexnumbers,wespeakof
asacomplexfunctionofacomplexvariable.
Wecanthinkof
asamap
;therefore
becomesavector-valuedfunctionoftworealvariables.Thus
andaremerelythecomponentsofthoughtofasavectorfunction.Hencewemaywriteuniquely,whereandarereal-valuedfunctionsdefinedon.For,wecanletanddefineand.
Def1.Let
bedefinedonadeletedneighborhoodof
.Themeans
thatforevery
,thereisa
suchthat
,andimplythat.
Wealsodefine,forexample,
tomeanthatforany,thereisan
suchthatimpliesthat.Figure1.6
iscloseto
when
iscloseto
Thelimitas
istakenforan
arbitraryapproachingbutnotalonganyparticulardirection.ii.
Thelimit
isunique.Thefollowingpropertiesoflimitshold:
If
and
,theni.iv.iii.if.Also,ifisdefinedatthepointsand
,then
Th1.Let
thenandProof:Itiseasybyusingthefollowinginequalities
Def2.Letbeanopensetandlet
beagivenfunction.Wesay
iscontinuousat
iffand
iscontinuouson
is
iscontinuousateach
.
From(i),(ii),and(iii)wecanimmediatelydeducethatif
andarecontinuouson,thensoarethesum
andtheproduct,andsoisif
forall
.Alsoif
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广东工贸职业技术学院高职单招语文2019-2024历年真题考点试卷含答案解析
- 2025年安徽绿海商务职业学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 2025年宁夏警官职业学院高职单招语文2019-2024历年真题考点试卷含答案解析
- 2025年威海职业学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 2017丙肝培训课件
- 918小学生教育课件
- 小学春季学期开学安全教育
- 清新水彩模板
- 母亲节节日献礼关注母亲需求感恩母亲无私奉献课件
- 药学处方审核培训
- 2024版滴灌购销合同滴灌合同
- TD/T 1057-2020 国土调查数据库标准(正式版)
- 【含答案】高处安装、维护、拆除理论考试200题
- 太极拳文化与养生智慧树知到期末考试答案章节答案2024年宁波财经学院
- 2024年开封大学单招职业适应性测试题库及答案解析
- 个人价值倾向测试题附有答案
- (2023)四年级科学质量监测试题
- 自然常数e的意义与计算
- 糖尿病眼部护理课件
- (课件)文题5【乡情】
- 如何培养严重精神障碍患者的社交技能和人际交往能力
评论
0/150
提交评论